Hermite polynomials

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

The polynomials arise in:

Hermite polynomials were defined by Pierre-Simon Laplace in 1810,[1][2] though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859.[3] Chebyshev's work was overlooked, and they were named later after Charles Hermite, who wrote on the polynomials in 1864, describing them as new.[4] They were consequently not new, although Hermite was the first to define the multidimensional polynomials.

Definition

[edit]

Like the other classical orthogonal polynomials, the Hermite polynomials can be defined from several different starting points. Noting from the outset that there are two different standardizations in common use, one convenient method is as follows:

  • The "probabilist's Hermite polynomials" are given by
  • while the "physicist's Hermite polynomials" are given by

These equations have the form of a Rodrigues' formula and can also be written as,

The two definitions are not exactly identical; each is a rescaling of the other:

These are Hermite polynomial sequences of different variances; see the material on variances below.

The notation He and H is that used in the standard references.[5] The polynomials Hen are sometimes denoted by Hn, especially in probability theory, because is the probability density function for the normal distribution with expected value 0 and standard deviation 1.

  • The first eleven probabilist's Hermite polynomials are:
  • The first eleven physicist's Hermite polynomials are:
Quick reference table
physicist's probabilist's
symbol
head coefficient
differential operator
orthogonal to
inner product
generating function
Rodrigues' formula
recurrence relation

Properties

[edit]

The nth-order Hermite polynomial is a polynomial of degree n. The probabilist's version Hen has leading coefficient 1, while the physicist's version Hn has leading coefficient 2n.

Symmetry

[edit]

From the Rodrigues formulae given above, we can see that Hn(x) and Hen(x) are even or odd functions depending on n:

Orthogonality

[edit]

Hn(x) and Hen(x) are nth-degree polynomials for n = 0, 1, 2, 3,.... These polynomials are orthogonal with respect to the weight function (measure) or i.e., we have

Furthermore, and where is the Kronecker delta.

The probabilist polynomials are thus orthogonal with respect to the standard normal probability density function.

Completeness

[edit]

The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying in which the inner product is given by the integral including the Gaussian weight function w(x) defined in the preceding section.

An orthogonal basis for L2(R, w(x) dx) is a complete orthogonal system. For an orthogonal system, completeness is equivalent to the fact that the 0 function is the only function fL2(R, w(x) dx) orthogonal to all functions in the system.

Since the linear span of Hermite polynomials is the space of all polynomials, one has to show (in physicist case) that if f satisfies for every n ≥ 0, then f = 0.

One possible way to do this is to appreciate that the entire function vanishes identically. The fact then that F(it) = 0 for every real t means that the Fourier transform of f(x)ex2 is 0, hence f is 0 almost everywhere. Variants of the above completeness proof apply to other weights with exponential decay.

In the Hermite case, it is also possible to prove an explicit identity that implies completeness (see section on the Completeness relation below).

An equivalent formulation of the fact that Hermite polynomials are an orthogonal basis for L2(R, w(x) dx) consists in introducing Hermite functions (see below), and in saying that the Hermite functions are an orthonormal basis for L2(R).

Hermite's differential equation

[edit]

The probabilist's Hermite polynomials are solutions of the differential equation where λ is a constant. Imposing the boundary condition that u should be polynomially bounded at infinity, the equation has solutions only if λ is a non-negative integer, and the solution is uniquely given by , where denotes a constant.

Rewriting the differential equation as an eigenvalue problem the Hermite polynomials may be understood as eigenfunctions of the differential operator . This eigenvalue problem is called the Hermite equation, although the term is also used for the closely related equation whose solution is uniquely given in terms of physicist's Hermite polynomials in the form , where denotes a constant, after imposing the boundary condition that u should be polynomially bounded at infinity.

The general solutions to the above second-order differential equations are in fact linear combinations of both Hermite polynomials and confluent hypergeometric functions of the first kind. For example, for the physicist's Hermite equation the general solution takes the form where and are constants, are physicist's Hermite polynomials (of the first kind), and are physicist's Hermite functions (of the second kind). The latter functions are compactly represented as where are Confluent hypergeometric functions of the first kind. The conventional Hermite polynomials may also be expressed in terms of confluent hypergeometric functions, see below.

With more general boundary conditions, the Hermite polynomials can be generalized to obtain more general analytic functions for complex-valued λ. An explicit formula of Hermite polynomials in terms of contour integrals (Courant & Hilbert 1989) is also possible.

Recurrence relation

[edit]

The sequence of probabilist's Hermite polynomials also satisfies the recurrence relation Individual coefficients are related by the following recursion formula: and a0,0 = 1, a1,0 = 0, a1,1 = 1.

For the physicist's polynomials, assuming we have Individual coefficients are related by the following recursion formula: and a0,0 = 1, a1,0 = 0, a1,1 = 2.

The Hermite polynomials constitute an Appell sequence, i.e., they are a polynomial sequence satisfying the identity

An integral recurrence that is deduced and demonstrated in [6] is as follows:

Equivalently, by Taylor-expanding, These umbral identities are self-evident and included in the differential operator representation detailed below,

In consequence, for the mth derivatives the following relations hold:

It follows that the Hermite polynomials also satisfy the recurrence relation

These last relations, together with the initial polynomials H0(x) and H1(x), can be used in practice to compute the polynomials quickly.

Turán's inequalities are

Moreover, the following multiplication theorem holds:

Explicit expression

[edit]

The physicist's Hermite polynomials can be written explicitly as

These two equations may be combined into one using the floor function:

The probabilist's Hermite polynomials He have similar formulas, which may be obtained from these by replacing the power of 2x with the corresponding power of 2x and multiplying the entire sum by 2n/2:

Inverse explicit expression

[edit]

The inverse of the above explicit expressions, that is, those for monomials in terms of probabilist's Hermite polynomials He are

The corresponding expressions for the physicist's Hermite polynomials H follow directly by properly scaling this:[7]

Generating function

[edit]

The Hermite polynomials are given by the exponential generating function

This equality is valid for all complex values of x and t, and can be obtained by writing the Taylor expansion at x of the entire function zez2 (in the physicist's case). One can also derive the (physicist's) generating function by using Cauchy's integral formula to write the Hermite polynomials as

Using this in the sum one can evaluate the remaining integral using the calculus of residues and arrive at the desired generating function.

A slight generalization states[8]

Expected values

[edit]

If X is a random variable with a normal distribution with standard deviation 1 and expected value μ, then

The moments of the standard normal (with expected value zero) may be read off directly from the relation for even indices: where (2n − 1)!! is the double factorial. Note that the above expression is a special case of the representation of the probabilist's Hermite polynomials as moments:

Integral representations

[edit]

From the generating-function representation above, we see that the Hermite polynomials have a representation in terms of a contour integral, as with the contour encircling the origin.

Using the Fourier transform of the gaussian , we have

Other properties

[edit]

The addition theorem, or the summation theorem, states that[9][10]: 8.958 for any nonzero vector .

The multiplication theorem states that[9]for any nonzero .

Feldheim formula[11]: Eq 46 where has a positive real part. As a special case,[11]: Eq 52 

Asymptotic expansion

[edit]

Asymptotically, as n → ∞, the expansion[12] holds true. For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude: which, using Stirling's approximation, can be further simplified, in the limit, to

This expansion is needed to resolve the wavefunction of a quantum harmonic oscillator such that it agrees with the classical approximation in the limit of the correspondence principle.

A better approximation, which accounts for the variation in frequency, is given by

A finer approximation,[13] which takes into account the uneven spacing of the zeros near the edges, makes use of the substitution with which one has the uniform approximation

Similar approximations hold for the monotonic and transition regions. Specifically, if then while for with t complex and bounded, the approximation is where Ai is the Airy function of the first kind.

Special values

[edit]

The physicist's Hermite polynomials evaluated at zero argument Hn(0) are called Hermite numbers.

which satisfy the recursion relation Hn(0) = −2(n − 1)Hn − 2(0). Equivalently, .

In terms of the probabilist's polynomials this translates to

Kibble–Slepian formula

[edit]

Let be a real symmetric matrix, then the Kibble–Slepian formula states that where is the -fold summation over all symmetric matrices with non-negative integer entries, is the trace of , and is defined as . This gives Mehler's formula when .

Equivalently stated, if is a positive semidefinite matrix, then set , we have , so Equivalently stated in a form closer to the boson quantum mechanics of the harmonic oscillator:[14] where each is the -th eigenfunction of the harmonic oscillator, defined as The Kibble–Slepian formula was proposed by Kibble in 1945[15] and proven by Slepian in 1972 using Fourier analysis.[16] Foata gave a combinatorial proof[17] while Louck gave a proof via boson quantum mechanics.[14] It has a generalization for complex-argument Hermite polynomials.[18][19]

Relations to other functions

[edit]

Laguerre polynomials

[edit]

The Hermite polynomials can be expressed as a special case of the Laguerre polynomials:

Hypergeometric functions

[edit]

The physicist's Hermite polynomials can be expressed as a special case of the parabolic cylinder functions: in the right half-plane, where U(a, b, z) is Tricomi's confluent hypergeometric function. Similarly, where 1F1(a, b; z) = M(a, b; z) is Kummer's confluent hypergeometric function.

There is also[20]

Limit relations

[edit]

The Hermite polynomials can be obtained as the limit of various other polynomials.[21]

As a limit of Jacobi polynomials:As a limit of ultraspherical polynomials:As a limit of associated Laguerre polynomials:

Hermite polynomial expansion

[edit]

Similar to Taylor expansion, some functions are expressible as an infinite sum of Hermite polynomials. Specifically, if , then it has an expansion in the physicist's Hermite polynomials.[22]

Given such , the partial sums of the Hermite expansion of converges to in the norm if and only if .[23]

Differential-operator representation

[edit]

The probabilist's Hermite polynomials satisfy the identity[24] where D represents differentiation with respect to x, and the exponential is interpreted by expanding it as a power series. There are no delicate questions of convergence of this series when it operates on polynomials, since all but finitely many terms vanish.

Since the power-series coefficients of the exponential are well known, and higher-order derivatives of the monomial xn can be written down explicitly, this differential-operator representation gives rise to a concrete formula for the coefficients of Hn that can be used to quickly compute these polynomials.

Since the formal expression for the Weierstrass transform W is eD2, we see that the Weierstrass transform of (2)nHen(x/2) is xn. Essentially the Weierstrass transform thus turns a series of Hermite polynomials into a corresponding Maclaurin series.

The existence of some formal power series g(D) with nonzero constant coefficient, such that Hen(x) = g(D)xn, is another equivalent to the statement that these polynomials form an Appell sequence. Since they are an Appell sequence, they are a fortiori a Sheffer sequence.

Generalizations

[edit]

The probabilist's Hermite polynomials defined above are orthogonal with respect to the standard normal probability distribution, whose density function is which has expected value 0 and variance 1.

Scaling, one may analogously speak of generalized Hermite polynomials[25] of variance α, where α is any positive number. These are then orthogonal with respect to the normal probability distribution whose density function is They are given by

Now, if then the polynomial sequence whose nth term is is called the umbral composition of the two polynomial sequences. It can be shown to satisfy the identities and The last identity is expressed by saying that this parameterized family of polynomial sequences is known as a cross-sequence. (See the above section on Appell sequences and on the differential-operator representation, which leads to a ready derivation of it. This binomial type identity, for α = β = 1/2, has already been encountered in the above section on #Recursion relations.)

"Negative variance"

[edit]

Since polynomial sequences form a group under the operation of umbral composition, one may denote by the sequence that is inverse to the one similarly denoted, but without the minus sign, and thus speak of Hermite polynomials of negative variance. For α > 0, the coefficients of are just the absolute values of the corresponding coefficients of .

These arise as moments of normal probability distributions: The nth moment of the normal distribution with expected value μ and variance σ2 is where X is a random variable with the specified normal distribution. A special case of the cross-sequence identity then says that

Hermite functions

[edit]

Definition

[edit]

One can define the Hermite functions (often called Hermite-Gaussian functions) from the physicist's polynomials: Thus,

Since these functions contain the square root of the weight function and have been scaled appropriately, they are orthonormal: and they form an orthonormal basis of L2(R). This fact is equivalent to the corresponding statement for Hermite polynomials (see above).

The Hermite functions are closely related to the Whittaker function (Whittaker & Watson 1996) Dn(z): and thereby to other parabolic cylinder functions.

The Hermite functions satisfy the differential equation This equation is equivalent to the Schrödinger equation for a harmonic oscillator in quantum mechanics, so these functions are the eigenfunctions.

Hermite functions: 0 (blue, solid), 1 (orange, dashed), 2 (green, dot-dashed), 3 (red, dotted), 4 (purple, solid), and 5 (brown, dashed)

Hermite functions: 0 (blue, solid), 2 (orange, dashed), 4 (green, dot-dashed), and 50 (red, solid)

Recursion relation

[edit]

Following recursion relations of Hermite polynomials, the Hermite functions obey and