Hydridonitride
This article or section possibly contains synthesis of material which does not verifiably mention or relate to the main topic. (August 2023) |
In chemistry, a hydridonitride (nitridohydride, nitride hydride, or hydride nitride) is a chemical compound that contains both hydride (H−) and nitride (N3−) ions. These inorganic compounds are distinct from inorganic amides and imides as the hydrogen does not share a bond with nitrogen, and usually contain a larger proportion of metals.[citation needed]
Structure
[edit]The hydride ion H− is stabilised by being surrounded by electropositive elements such as alkalis or alkaline earths.[1] Quaternary compounds exist where nitrogen forms a complex with bonds to a transition or main group element. The hydride requires the presence of another alkaline earth element.[1]
Production
[edit]Hydridonitrides may be produced by a process called self-propagating high-temperature synthesis (SHS) where a metal nitride is ignited in a hydrogen atmosphere.[2]
A metal (Ti, Zr, Hf, Y) can also be ignited in an atmosphere mixing hydrogen and nitrogen, and a hydridonitride is formed exothermically.[3]
The molten metal flux technique involves dissolving metal nitrides and hydrides in an excess of molten alkaline earth metal, by heating till everything is molten, and then cooling until crystals form, but the metal is still liquid. Draining the liquid metal (and centrifuging) leaves the crystals of hydridonitride behind. A eutectic molten metal allows it to be cooled more.[1]
If liquid alkali metal is used as a flux to grow a hydridonitride crystal, excess metal can be removed using liquid ammonia.[4]
Properties
[edit]Some hydridonitrides are sensitive to water vapour in air.[5] For non-stoichimetric compounds, as the proportion of hydrogen increases, the unit cell dimensions also increase, so hydrogen is not merely filling holes.[6] When heated to a sufficiently high temperature, hydridonitrides lose hydrogen first to form a metallic nitride or alloy.[7]
Room temperature superconductor
[edit]One lutetium hydride doped with nitrogen is claimed to be a room-temperature superconductor at up to 21°C at a pressure of 1 GPa, which is considerably lower than for other polyhydrides.[8] This has been called "red matter"[9] as it is red under high pressure, but blue at ambient conditions.[10][11] The claim has been met with some skepticism as it was made by the same team that made similar claims retracted by Nature in 2022,[12][13][14][15][16] claimed observation of solid metallic hydrogen in 2016 as well as other allegations.[17] First attempts to replicate the results have failed.[18][19] Ashcroft suggested metallic hydrogen could superconduct in 1968[20] at great pressures and in 2004 similarly that dense group IVa hydrides (as the new material) could also be superconductors at more accessible pressures.[21]
List
[edit]name | formula | system | space group | unit cell (lengths in Å, volume in Å3) | structure | comment | optical | reference |
---|---|---|---|---|---|---|---|---|
Lithium nitride hydride Lithium hydridonitride | Li4NH | tetragonal | I41/a | a = 4.9865, c = 9.877, V = 234.9, Z = 4 | yellow | [4] | ||
calcium hydridonitride | Ca2NH | cubic | Fd3m | a = 10.13, Z = 16 | brown-black | [5] | ||
tricalcium silicon trinitride hydride | Ca3SiN3H | monoclinic | C2/c | a = 5.236, b = 10.461, c = 16.389, β = 91.182°, Z = 8 | SiN4 tetrahedra in chains, Ca6H octahedra | [1][22] | ||
Titanium hydridonitride | TiN0.3H1.1 | [6] | ||||||
Ti0.7V0.3N0.23H0.8 | [6] | |||||||
Ca3CrN3H | hexagonal | P63/m | a= 7.22772 c=5.06172 Z=2 V=228.998 | [23] | ||||
hexacalcium dichromium hexanitride hydride | Ca6Cr2N6H | R3 | a = 9.0042, c = 9.1898, Z = 3 | planar CrN6−3, CrN5−3, octahedral Ca6H11+ | [1][24] | |||
strontium hydridonitride | Sr2NH | R3m | a = 3.870, c = 18.958 | orange-yellow or black | [25] | |||
Lithium distrontium dihydride nitride | LiSr2H2N | orthorhombic | Pnma | a = 7.4714, b = 3.7028, c = 13.2986, Z = 4 | [SrH5N2]9−, [SrH4N3]11−, [LiH3N]5− | [26] | ||
Ti0.6Nb0.4N0.4H1.1 | [6] | |||||||
zirconium hydridonitride | ZrN0.17H1.65 | [2] | ||||||
Ti0.88Zr0.12N0.28H1.39 | [6] | |||||||
Zr0.7Nb0.3N0.33H1.15 | [6] | |||||||
barium hydridonitride | Ba2NH | hexagonal | R3m | a = 4.0262, c = 20.469 | pure H− conductor | [27] | ||
Tribarium chromium trinitride hydride | Ba3CrN3H | hexagonal | P63/m | a = 8.0270, c = 5.6240, Z = 2 V=313.83 | planar CrN5−3, octahedral HBa11+6 | nonmagnetic insulator | green | [28][29][1] |
Lithium dieuropium nitride trihydride | LiEu2NH3 | orthorhombic | Pnma | a = 7.4213, b = 3.6726, c = 13.1281, Z = 4 | [Eu3+H7N2]10− and [Eu2+H6N3]13− | ruby red | [30] | |
Lutetium hydride nitride | LuH3−xNy | Fm3m | < 1 GPa | blue | [31][8] | |||
Lutetium hydride nitride | LuH3−xNy | Immm | super conductor at 1 GPa and 21 °C | pink | [8] | |||
Hafnium hydridonitride | HfNH0.6 | hcp | a = 3.241, c = 5.198 | [7] | ||||
Hafnium hydridonitride | HfNH | hcp | a = 3.216, c = 5.259 | [7] | ||||
Thorium nitride hydride | ThNH2 | fcc | a = 5.596 | [32] |
References
[edit]- ^ a b c d e f Falb, Nathaniel W.; Neu, Jennifer N.; Besara, Tiglet; Whalen, Jeffrey B.; Singh, David J.; Siegrist, Theo (14 February 2019). "Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr". Inorganic Chemistry. 58 (5): 3302–3307. doi:10.1021/acs.inorgchem.8b03367. PMID 30762348. S2CID 73438467.
- ^ a b Aleksanyan, A.G; Aghajanyan, N.N; Dolukhanyan, S.K; Mnatsakanyan, N.L; Harutyunyan, Kh.S; Hayrapetyan, V.S (January 2002). "Thermal-radiation synthesis of zirconium hydridonitrides and carbohydrides" (PDF). Journal of Alloys and Compounds. 330–332: 559–563. doi:10.1016/S0925-8388(01)01519-5.
- ^ Dolukhanyan, S. K.; Aleksanyan, A. G.; Shekhtman, V. Sh.; Hakobyan, H. G.; Mayilyan, D. G.; Aghadjanyan, N. N.; Abrahamyan, K. A.; Mnatsakanyan, N. L.; Ter-Galstyan, O. P. (2 July 2010). "Synthesis of transition metal hydrides and a new process for production of refractory metal alloys: An autoreview". International Journal of Self-Propagating High-Temperature Synthesis. 19 (2): 85–93. doi:10.3103/S1061386210020020. S2CID 137089432.
- ^ a b Niewa, R.; Zherebtsov, D. A. (January 2002). "Redetermination of the crystal structure of tetralithium mononitride monohydride, Li4NH". Zeitschrift für Kristallographie - New Crystal Structures. 217 (JG): 317–318. doi:10.1524/ncrs.2002.217.jg.317. ISSN 2197-4578.
- ^ a b Brice, Jean-Francois; Motte, Jean-Pierre; Courtois, Alain; Protas, Jean; Aubry, Jacques (February 1976). "Etude structurale de Ca2NH par diffraction des rayons X, diffraction des neutrons et résonance magnétique nucléaire du proton dans le solide" [Structural study on Ca2NH by X-ray-diffraction, neutron-diffraction and proton nuclear magnetic-resonance in the solid]. Journal of Solid State Chemistry. 17 (1–2): 135–142. Bibcode:1976JSSCh..17..135B. doi:10.1016/0022-4596(76)90213-9.
- ^ a b c d e f Hampton, Michael D.; Schur, Dmitry V.; Zaginaichenko, Svetlana Yu; Trefilov, V. I. (2012-12-06). "Structural Peculiarities of Multicomponent Hydridonitrides on the Basis of Metals of IV–V Groups Produced by SHS Method". Hydrogen Materials Science and Chemistry of Metal Hydrides. Springer Science & Business Media. p. 361. doi:10.1007/978-94-010-0558-6_35. ISBN 978-94-010-0558-6.
- ^ a b c Dolukhanyan, S (May 1995). "Interaction of hafnium with hydrogen and nitrogen in the combustion regime". International Journal of Hydrogen Energy. 20 (5): 391–395. Bibcode:1995IJHE...20..391D. doi:10.1016/0360-3199(94)00059-9.
- ^ a b c Dasenbrock-Gammon, Nathan; Snider, Elliot; McBride, Raymond; Pasan, Hiranya; Durkee, Dylan; Khalvashi-Sutter, Nugzari; Munasinghe, Sasanka; Dissanayake, Sachith E.; Lawler, Keith V.; Salamat, Ashkan; Dias, Ranga P. (2023-03-09). "Evidence of near-ambient superconductivity in a N-doped lutetium hydride". Nature. 615 (7951): 244–250. Bibcode:2023Natur.615..244D. doi:10.1038/s41586-023-05742-0. ISSN 0028-0836. PMID 36890373. S2CID 257407449. (Retracted, see doi:10.1038/s41586-023-06774-2, PMID 37935926)
- ^ Crane, Leah (8 March 2023). "'Red matter' superconductor could transform electronics – if it works". New Scientist. 257 (3430): 9. doi:10.1016/S0262-4079(23)00455-4. S2CID 257625692.
- ^ Chang, Kenneth (8 March 2023). "New Room-Temperature Superconductor Offers Tantalizing Possibilities". The New York Times. Retrieved 9 March 2023.
- ^ Service, Robert F. (8 March 2023). "'Revolutionary' blue crystal resurrects hope of room temperature superconductivity". Science. 379 (6636). doi:10.1126/science.adh4968.
- ^ Dasenbrock-Gammon, Nathan; Snider, Elliot; McBride, Raymond; Pasan, Hiranya; Durkee, Dylan; Khalvashi-Sutter, Nugzari; Munasinghe, Sasanka; Dissanayake, Sachith E.; Lawler, Keith V.; Salamat, Ashkan; Dias, Ranga P. (9 March 2023). "Evidence of near-ambient superconductivity in a N-doped lutetium hydride". Nature. 615 (7951): 244–250. Bibcode:2023Natur.615..244D. doi:10.1038/s41586-023-05742-0. PMID 36890373. S2CID 257407449 – via www.nature.com. (Retracted, see doi:10.1038/s41586-023-06774-2, PMID 37935926)
- ^ Woodward, Aylin (8 March 2023). "The Scientific Breakthrough That Could Make Batteries Last Longer". Wall Street Journal.
- ^ "'Revolutionary' blue crystal resurrects hope of room temperature superconductivity". www.science.org.
- ^ Margo Anderson (March 8, 2023). "Room-Temperature Superconductivity Claimed". IEEE Spectrum. Institute of Electrical and Electronics Engineers.
- ^ Wood, Charlie; Savitsky, Zack (8 March 2023). "Room-Temperature Superconductor Discovery Meets With Resistance". Quanta Magazine. Simons Foundation. Retrieved 2023-03-14.
- ^ Garisto, Dan (2023-03-09). "Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet". Physics. 16: 40. Bibcode:2023PhyOJ..16...40G. doi:10.1103/Physics.16.40. S2CID 257615348.
- ^ Wilkins, Alex (17 March 2023). "'Red matter' superconductor may not be a wonder material after all". New Scientist.
- ^ Ming, Xue; Zhang, Ying-Jie; Zhu, Xiyu; Li, Qing; He, Chengping; Liu, Yuecong; Huang, Tianheng; Liu, Gan; Zheng, Bo; Yang, Huan; Sun, Jian; Xi, Xiaoxiang; Wen, Hai-Hu (2023-05-11). "Absence of near-ambient superconductivity in LuH2±xNy". Nature. 620 (7972): 72–77. doi:10.1038/s41586-023-06162-w. ISSN 1476-4687. PMC 10396964. PMID 37168015. S2CID 258638296.
- ^ Ashcroft, N. W. (1968-12-23). "Metallic Hydrogen: A High-Temperature Superconductor?". Physical Review Letters. 21 (26): 1748–1749. Bibcode:1968PhRvL..21.1748A. doi:10.1103/PhysRevLett.21.1748.
- ^ Ashcroft, N. W. (2004-05-06). "Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?". Physical Review Letters. 92 (18): 187002. Bibcode:2004PhRvL..92r7002A. doi:10.1103/PhysRevLett.92.187002. PMID 15169525.
- ^ Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (27 July 2017). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca8In2SiN4 and Semiconductor Ca3SiN3H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. PMID 28749660.
- ^ Cao, Yu; Kirsanova, Maria A.; Ochi, Masayuki; Al Maksoud, Walid; Zhu, Tong; Rai, Rohit; Gao, Shenghan; Tsumori, Tatsuya; Kobayashi, Shintaro; Kawaguchi, Shogo; Abou-Hamad, Edy; Kuroki, Kazuhiko; Tassel, Cédric; Abakumov, Artem M.; Kobayashi, Yoji (2022-09-26). "Topochemical Synthesis of Ca 3 CrN 3 H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis". Angewandte Chemie International Edition. 61 (39): e202209187. doi:10.1002/anie.202209187. ISSN 1433-7851. PMID 35929578. S2CID 251349324.
- ^ Bailey, Mark S.; Obrovac, Mark N.; Baillet, Emilie; Reynolds, Thomas K.; Zax, David B.; DiSalvo, Francis J. (September 2003). "Ca 6 [Cr 2 N 6 ]H, the First Quaternary Nitride−Hydride". Inorganic Chemistry. 42 (18): 5572–5578. doi:10.1021/ic0343206. ISSN 0020-1669. PMID 12950205.
- ^ Sichla, Th.; Altorfer, F.; Hohlwein, D.; Reimann, K.; Steube, M.; Wrzesinski, J.; Jacobs, H. (1997). "Kristallstrukturbestimmung an einer Strontium-hydrid-imid-nitrid-Phase - Sr2(H)N/SrNH bzw. Sr2(D)N/SrND - mit Röntgen-, Neutronen- und Synchrotron-Strahlung". Zeitschrift für anorganische und allgemeine Chemie (in German). 623 (1–6): 414–422. doi:10.1002/zaac.19976230166. ISSN 0044-2313.
- ^ Blaschkowski, Björn; Schleid, Thomas (November 2007). "Darstellung und Kristallstruktur des Lithium-Strontium-Hydridnitrids LiSr2H2N". Zeitschrift für anorganische und allgemeine Chemie. 633 (15): 2644–2648. doi:10.1002/zaac.200700315.
- ^ ALTORFER, F; BUHRER, W; WINKLER, B; CODDENS, G; ESSMANN, R; JACOBS, H (May 1994). "H−-jump diffusion in barium-nitride-hydride Ba2NH". Solid State Ionics. 70–71: 272–277. doi:10.1016/0167-2738(94)90322-0.
- ^ Falb, Nathaniel W.; Neu, Jennifer N.; Besara, Tiglet; Whalen, Jeffrey B.; Singh, David J.; Siegrist, Theo (2019-03-04). "Ba 3 CrN 3 H: A New Nitride-Hydride with Trigonal Planar Cr 4+". Inorganic Chemistry. 58 (5): 3302–3307. doi:10.1021/acs.inorgchem.8b03367. ISSN 0020-1669. PMID 30762348. S2CID 73438467.
- ^ Siegrist, Theo; Singh, David J.; Whalen, Jeffrey B.; Besara, Tiglet; Neu, Jennifer N.; Falb, Nathaniel W. (2019). "Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr4+". Inorganic Chemistry. 58 (5): 3302–3307. doi:10.26434/chemrxiv.7418429. PMID 30762348. S2CID 239569566.
- ^ Blaschkowski, Björn; Schleid, Thomas (August 2012). "Mixed-Valent Europium in the Nitride Hydride LiEu2NH3". Zeitschrift für anorganische und allgemeine Chemie. 638 (10): 1592. doi:10.1002/zaac.201204051.
- ^ Jin, ChangQing; Ceperly, David (8 March 2023). "Hopes raised for room-temperature superconductivity, but doubts remain". Nature. 615 (7951): 221–222. Bibcode:2023Natur.615..221J. doi:10.1038/d41586-023-00599-9. PMID 36890377. S2CID 257407330.
- ^ Peterson, D.T; Nelson, S.O (August 1981). "Equilibrium hydrogen pressures in the Th-N-H system". Journal of the Less Common Metals. 80 (2): 221–226. doi:10.1016/0022-5088(81)90095-3.