List of extinction events
This is a list of extinction events, both mass and minor:[1]
"Big Five" major extinction events (see graphic)
Period or supereon | Extinction | Date | Probable causes[2] |
---|---|---|---|
Quaternary | Holocene extinction | c. 10,000 BC – Ongoing | Humans[3] |
Quaternary extinction event | 640,000, 74,000, and 13,000 years ago | Unknown; may include climate changes, massive volcanic eruptions and Humans (largely by human overhunting)[4][5][6] | |
Neogene | Pliocene–Pleistocene boundary extinction | 2 Ma | Possible causes include a supernova[7][8] or the Eltanin impact[9][10] |
Middle Miocene disruption | 14.5 Ma | Climate change due to change of ocean circulation patterns. Milankovitch cycles may have also contributed[11] | |
Paleogene | Eocene–Oligocene extinction event | 33.9 Ma | Multiple causes including global cooling, polar glaciation, falling sea levels, and the Popigai impactor[12] |
Cretaceous | Cretaceous–Paleogene extinction event | 66 Ma | Chicxulub impactor; the volcanism which resulted in the formation of the Deccan Traps may have contributed.[13] |
Cenomanian-Turonian boundary event | 94 Ma | Most likely underwater volcanism associated with the Caribbean large igneous province, which would have caused global warming and acidic oceans[14] | |
Aptian extinction | 117 Ma | Unknown, but may be due to volcanism of the Rajmahal Traps[15] | |
Jurassic | End-Jurassic (Tithonian) | 145 Ma | No longer regarded as a major extinction but rather a series of lesser events due to bolide impacts, eruptions of flood basalts, climate change and disruptions to oceanic systems[16] |
Pliensbachian-Toarcian extinction (Toarcian turnover) | 186-178 Ma | Formation of the Karoo-Ferrar Igneous Provinces[17] | |
Triassic | Triassic–Jurassic extinction event | 201 Ma | Possible causes include gradual climate changes, volcanism from the Central Atlantic magmatic province[18] or an impactor[19] |
Carnian Pluvial Event | 230 Ma | Wrangellia flood basalts,[20] or the uplift of the Cimmerian orogeny | |
Olenekian-Anisian boundary event | 247 Ma | Ocean acidification[21] | |
Smithian-Spathian boundary event | 249 Ma | Late eruptions of the Siberian Traps | |
Griesbachian-Dienerian boundary-event | 252 | Late eruptions of the Siberian Traps[22] | |
Permian | Permian–Triassic extinction event | 252 Ma | Large igneous province (LIP) eruptions [23] from the Siberian Traps,[24] an impact event (the Wilkes Land Crater),[25] an Anoxic event,[26] an Ice age,[27] or other possible causes |
End-Capitanian extinction event | 260 Ma | Volcanism from the Emeishan Traps,[28] resulting in global cooling and other effects | |
Olson's Extinction | 270 Ma | Unknown.[29][30][31] Possibly a change in climate, but evidence for this is weak.[32] This event may actually be a slow decline over 20 Ma.[33] | |
Carboniferous | Carboniferous rainforest collapse | 305 Ma | Possiblities include a series of rapid changes in climate, or volcanism of the Skagerrak-Centered Large Igneous Province[34] |
Serpukhovian extinction | ~ 325 Ma | Onset of the Late Paleozoic icehouse | |
Devonian | Hangenberg event | 359 Ma | Anoxia, possibly related to the Famennian glaciation or volcanic activity, Supernova[35] |
Late Devonian extinction (Kellwasser event) | 372 Ma | Viluy Traps[36][37][38] Woodleigh Impactor?[2] | |
Taghanic Event | ~384 Ma | Anoxia | |
Kačák Event | ~388 Ma | Anoxia | |
Silurian | Lau event | 420 Ma | Changes in sea level and chemistry?[39] |
Mulde event | 424 Ma | Global drop in sea level?[40] | |
Ireviken event | 428 Ma | Deep-ocean anoxia;[41] Milankovitch cycles?[42] | |
Ordovician | Late Ordovician mass extinction | 445-444 Ma | Global cooling and sea level drop, and/or global warming related to volcanism and anoxia[43] |
Cambrian | Cambrian–Ordovician extinction event | 488 Ma | Kalkarindji Large Igneous Province?[44] |
Dresbachian extinction event | 502 Ma | ||
End-Botomian extinction event | 517 Ma | ||
Precambrian | End-Ediacaran extinction | 542 Ma | Anoxic event[45] |
Great Oxygenation Event | 2400 Ma | Rising oxygen levels in the atmosphere due to the development of photosynthesis as well as possible Snowball Earth event. (see: Huronian glaciation.) |
Timeline
[edit]References
[edit]- ^ Partial list from Image:Extinction Intensity.png
- ^ a b Bond, David P. G.; Grasby, Stephen E. (2017-07-15). "On the causes of mass extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. Mass Extinction Causality: Records of Anoxia, Acidification, and Global Warming during Earth's Greatest Crises. 478: 3–29. Bibcode:2017PPP...478....3B. doi:10.1016/j.palaeo.2016.11.005. ISSN 0031-0182.
- ^ Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF (13 November 2017). "World Scientists' Warning to Humanity: A Second Notice". BioScience. 67 (12): 1026–1028. doi:10.1093/biosci/bix125. hdl:11336/71342.
Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.
- ^ Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian (4 June 2014). "Global late Quaternary megafauna extinctions linked to humans, not climate change". Proceedings of the Royal Society B. 281 (1787): 20133254. doi:10.1098/rspb.2013.3254. PMC 4071532. PMID 24898370.
- ^ Vignieri, S. (25 July 2014). "Vanishing fauna (Special issue)". Science. 345 (6195): 392–412. Bibcode:2014Sci...345..392V. doi:10.1126/science.345.6195.392. PMID 25061199.
Although some debate persists, most of the evidence suggests that humans were responsible for extinction of this Pleistocene fauna, and we continue to drive animal extinctions today through the destruction of wild lands, consumption of animals as a resource or a luxury, and persecution of species we see as threats or competitors.
- ^ Oppenheimer, Clive (2002-08-01). "Limited global change due to the largest known Quaternary eruption, Toba ≈74kyr BP?". Quaternary Science Reviews. 21 (14): 1593–1609. Bibcode:2002QSRv...21.1593O. doi:10.1016/S0277-3791(01)00154-8. ISSN 0277-3791.
- ^ Benitez, Narciso; et al. (2002). "Evidence for Nearby Supernova Explosions". Phys. Rev. Lett. 88 (8): 081101. arXiv:astro-ph/0201018. Bibcode:2002PhRvL..88h1101B. doi:10.1103/PhysRevLett.88.081101. PMID 11863949. S2CID 41229823.
- ^ Fimiani, L.; Cook, D.L.; Faestermann, T.; Gómez-Guzmán, J.M.; Hain, K.; Herzog, G.; Knie, K.; Korschinek, G.; Ludwig, P.; Park, J.; Reedy, R.C.; Rugel, G. (13 April 2016). "Interstellar 60Fe on the Surface of the Moon". Physical Review Letters. 116 (15): 151104. Bibcode:2016PhRvL.116o1104F. doi:10.1103/PhysRevLett.116.151104. PMID 27127953.
- ^ "Pliocene-Pleistocene boundary: did Eltanin asteroid kickstart the ice ages?". Archived from the original on 2017-10-03. Retrieved 2019-01-18.
- ^ "Did a Killer Asteroid Drive the Planet Into An Ice Age?". Universe Today. 20 September 2012.
- ^ Holbourn, Ann; Kuhnt, Wolfgang; Schulz, Michael; Erlenkeuser, Helmut (2005). "Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion". Nature. 438 (7067): 483–87. Bibcode:2005Natur.438..483H. doi:10.1038/nature04123. PMID 16306989. S2CID 4406410.
- ^ "Russia's Popigai Meteor Crash Linked to Mass Extinction". Live Science. June 13, 2014.
- ^ Brusatte, Steve (2018). The Rise and Fall of the Dinosaurs. London: Picador. pp. 328–35. ISBN 978-1-5098-3009-1.
- ^ David Bond; Paul Wignall. "Large igneous provinces and mass extinctions: An update" (PDF). p. 17. Archived from the original (PDF) on 2016-01-24.
- ^ Singh, A. P.; Kumar, Niraj; Singh, Bijendra (2004). "Magmatic underplating beneath the Rajmahal Traps:Gravity signature and derived 3-D configuration.Proc". Indian Acad. Sci. (Earth Planet. Sci: 759–769. CiteSeerX 10.1.1.501.4945. doi:10.1007/BF02704035. S2CID 129952630.
- ^ Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul; Sutton, Mark D.; Price, Gregory D. (2017). "Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: evidence for protracted faunal and ecological turnover". Biological Reviews. 92 (2): 776–814. doi:10.1111/brv.12255. ISSN 1469-185X. PMC 6849608. PMID 26888552.
- ^ József Pálfy; Paul L. Smith (2000). "Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism". Geology. 28 (8): 747–750. Bibcode:2000Geo....28..747P. doi:10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2.
- ^ Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province". Science. 340 (6135): 941–45. Bibcode:2013Sci...340..941B. CiteSeerX 10.1.1.1019.4042. doi:10.1126/science.1234204. PMID 23519213. S2CID 15895416.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Onoue, Tetsuji; Sato, Honami; Yamashita, Daisuke; Ikehara, Minoru; Yasukawa, Kazutaka; Fujinaga, Koichiro; Kato, Yasuhiro; Matsuoka, Atsushi (8 July 2016). "Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa". Scientific Reports. 6 (29609): 29609. Bibcode:2016NatSR...629609O. doi:10.1038/srep29609. PMC 4937377. PMID 27387863.
- ^ Dal Corso, J.; Mietto, P.; Newton, R.J.; Pancost, R.D.; Preto, N.; Roghi, G.; Wignall, P.B. (2012). "Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts". Geology. 40 (1): 79–82. Bibcode:2012Geo....40...79D. doi:10.1130/g32473.1.
- ^ Song, Haijun; Song, Huyue; Tong, Jinnan; Gordon, Gwyneth W.; Wignall, Paul B.; Tian, Li; Zheng, Wang; Algeo, Thomas J.; Liang, Lei; Bai, Ruoyu; Wu, Kui; Anbar, Ariel D. (2021-02-20). "Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic". Chemical Geology. 562: 120038. Bibcode:2021ChGeo.56220038S. doi:10.1016/j.chemgeo.2020.120038. ISSN 0009-2541. S2CID 233915627.
- ^ Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo (2016-06-24). "Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction". Scientific Reports. 6 (1): 28372. Bibcode:2016NatSR...628372H. doi:10.1038/srep28372. ISSN 2045-2322. PMC 4920029. PMID 27340926.
- ^ algeo, Thomas (2023-09-08). "Theory and classification of mass extinction causation". National Science Review. 11 (1): nwad237. doi:10.1093/nsr/nwad237. PMC 10727847. PMID 38116094.
- ^ Campbell, I; Czamanske, G.; Fedorenko, V.; Hill, R.; Stepanov, V. (1992). "Synchronism of the Siberian Traps and the Permian-Triassic Boundary". Science. 258 (5089): 1760–63. Bibcode:1992Sci...258.1760C. doi:10.1126/science.258.5089.1760. PMID 17831657. S2CID 41194645.
- ^ von Frese, R; Potts, L.; Wells, S.; Leftwich, T.; Kim, H. (2009). "GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica". Geochemistry, Geophysics, Geosystems. 10 (2): n/a. Bibcode:2009GGG....10.2014V. doi:10.1029/2008GC002149.
- ^ Wignall, P; Twitchett, R (2002). "Extent, duration, and nature of the Permian-Triassic superanoxic event". In Christian Koeberl; Kenneth G. MacLeod (eds.). Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America. p. 396. doi:10.1130/0-8137-2356-6.395. ISBN 978-0813723563.
- ^ Ice age, not warming, explains Permian-Triassic extinction event - UPI.com
- ^ Bond, David P.G.; Wignall, Paul B. (2014-09-01). "Large igneous provinces and mass extinctions: An update". Geological Society of America Special Papers. 505: 29–55. doi:10.1130/2014.2505(02). ISBN 9780813725055. ISSN 0072-1077.
- ^ Lucas, S. G. (1 July 2017). "Permian tetrapod extinction events". Earth-Science Reviews. 170: 31–60. Bibcode:2017ESRv..170...31L. doi:10.1016/j.earscirev.2017.04.008. ISSN 0012-8252.
- ^ Brocklehurst, Neil (15 May 2018). "An examination of the impact of Olson's extinction on tetrapods from Texas". PeerJ. 6: e4767. doi:10.7717/peerj.4767. PMC 5958880. PMID 29780669.
- ^ Brocklehurst, Neil (10 June 2020). "Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): 20200154. doi:10.1098/rspb.2020.0154. ISSN 0962-8452. PMC 7341920. PMID 32517621.
- ^ Laurin, Michel; Hook, Robert W. (2022). "The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups". BSGF - Earth Sciences Bulletin. 193: 10. doi:10.1051/bsgf/2022007.
- ^ Didier, Gilles; Laurin, Michel (June 2024). "Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions". Cladistics. 40 (3): 282–306. doi:10.1111/cla.12577. ISSN 0748-3007. PMID 38651531.
- ^ Doblas, Miguel; R., OYARZUN; J., LOPEZ-RUIZ; J.M., CEBRIA; Youbi, Nasrrddine; V., MAHECHA; Lago San José, Marceliano; POCOVI; B., CABANIS (1998-12-01). "Permo-Carboniferous Volcanism in Europe and North Africa: a Superplume exhaust valve in The Center of Pangea". Journal of African Earth Sciences. 26: 89–99. doi:10.1016/S0899-5362(97)00138-3.
- ^ Fields, Brian D.; Melott, Adrian L.; Ellis, John; Ertel, Adrienne F.; Fry, Brian J.; Lieberman, Bruce S.; Liu, Zhenghai; Miller, Jesse A.; Thomas, Brian C. (2020-09-01). "Supernova triggers for end-Devonian extinctions". Proceedings of the National Academy of Sciences of the United States of America. 117 (35): 21008–21010. arXiv:2007.01887. Bibcode:2020PNAS..11721008F. doi:10.1073/pnas.2013774117. ISSN 0027-8424. PMC 7474607. PMID 32817482.
- ^ Kravchinsky, V. A.; Konstantinov, K. M.; Courtillot, V.; Savrasov, J. I.; Valet, J.-P.; Cherniy, S. D.; Mishenin, S. G.; Parasotka, B. S. (2002). "Palaeomagnetism of East Siberian traps and kimberlites: Two new poles and palaeogeographic reconstructions at about 360 and 250 Ma" (PDF). Geophysical Journal International. 148 (1): 1–33. Bibcode:2002GeoJI.148....1K. doi:10.1046/j.0956-540x.2001.01548.x.
- ^ Kravchinsky, Vadim A. (2012). "Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events". Global and Planetary Change. 86–87: 31–36. doi:10.1016/j.gloplacha.2012.01.007.
- ^ Ricci, J; et al. (2013). "New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 531–40. doi:10.1016/j.palaeo.2013.06.020.
- ^ Jeppsson, L. (1998). "Silurian oceanic events: summary of general characteristics". In Landing, E.; Johnson, M.E. (eds.). Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes. James Hall Centennial Volume. New York State Museum Bulletin. Vol. 491. pp. 239–57.
- ^ Jeppsson, L.; Calner, M. (2007). "The Silurian Mulde Event and a scenario for secundo – secundo events". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 93 (2): 135–54. doi:10.1017/s0263593300000377. S2CID 129308139.
- ^ Munnecke, Axel; Samtleben, Christian; Bickert, Torsten (5 June 2003). "The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events". Palaeogeography, Palaeoclimatology, Palaeoecology. 195 (1–2): 119. Bibcode:2003PPP...195...99M. doi:10.1016/S0031-0182(03)00304-3.
- ^ Jeppsson, L (1997). "The anatomy of the Mid-Early Silurian Ireviken Event and a scenario for P-S events". In Brett, C.E.; Baird, G.C. (eds.). Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. New York: Columbia University Press. pp. 451–92.
- ^ Bond, David P.G.; Grasby, Stephen E. (18 May 2020). "Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation". Geology. 48 (8): 777–781. Bibcode:2020Geo....48..777B. doi:10.1130/G47377.1.
- ^ Ware, Bryant D.; Jourdan, Fred; Merle, Renaud; Chiaradia, Massimo; Hodges, Kyle (2018-04-01). "The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the Oldest and Most Compositionally Homogenous Province of the Phanerozoic". Journal of Petrology. 59 (4): 635–665. Bibcode:2018JPet...59..635W. doi:10.1093/petrology/egy040. ISSN 0022-3530.
- ^ Zhang, Feifei; Xiao, Shuhai; Kendall, Brian; Romaniello, Stephen J.; Cui, Huan; Meyer, Mike; Gilleaudeau, Geoffrey J.; Kaufman, Alan J.; Anbar, Ariel D. (2018). "Extensive marine anoxia during the terminal Ediacaran Period". Science Advances. 4 (6). American Association for the Advancement of Science: eaan8983. Bibcode:2018SciA....4.8983Z. doi:10.1126/sciadv.aan8983. ISSN 2375-2548. PMC 6010336. PMID 29938217.