List of largest stars
Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).[1]
Overview
Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.[2]
Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R☉, comparable to some of the largest known black holes.[3][4][5]
Angular diameters
The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few supergiants can be occulted by the Moon, including Antares and 119 Tauri. Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.[citation needed]
Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.[citation needed]
All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.
Caveats
Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:
- Stellar radii or diameters are usually derived only approximately using the Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
- Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
- Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
- Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
- Many distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
- In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[6][7]
Lists
The following lists show the largest known stars based on the host galaxy.
Milky Way
Star name | Solar radius (R☉) | Method[a] | Notes |
---|---|---|---|
Orbit of Saturn | 2,047–2,049.9[8][b] | Reported for reference | |
WOH G64 (For comparison) | 1,540[c] ± 77[9] | L/Teff | Located in the Large Magellanic Cloud. The largest known star with a well-defined radius.[9][10][14][11] |
Theoretical limit of star size (Milky Way) | ~1,500[15]–1,800[16] | Lower value comes from the rough average radii of the three largest stars studied in the paper. It is consistent with the largest possible stellar radii predicted from the current evolutionary theory, and it is believed that stars above this radius would be too unstable and usually do not form.[15] Higher value is derived from evolutionary modelling of red supergiants with low metallicites and an initial mass of 50 M☉. Reported for reference | |
RSGC1-F01 | 1,530 ± 365[17] | L/Teff | |
VY Canis Majoris | 1,420±120[18][19][20] | AD | An extreme oxygen-rich red hypergiant that has experienced two dimming periods in the 20th century where the star became dimmer by up to 2.5 magnitudes.[21] Potentially the largest known star in the Milky Way.[19] There is a possilbility that this size might be a bit overestimated (on the order of 1 sigma). Hence, the quoted radius might be just an upper limit.[18] |
AH Scorpii | 1,411±124[22][23] | AD | |
RSGC1-F06 | 1,382 ± 331[17] | L/Teff | |
S Persei | 1,364±6[24] | AD | |
VX Sagittarii | 1,356[25] – 1,480+180 −160[23] | AD | The most luminous known asymptotic giant branch star.[25] Widely recognised as being among the largest known stars.[26] |
NML Cygni | <1,350+195 −229[d] | AD | Surrounding dusty region is very complex making the radius hard to determine.[27] |
Stephenson 2 DFK 2 | 1,301 ± 285[17] | L/Teff | Another red supergiant, Stephenson 2 DFK 1 has an estimated radius of 2,150 R☉. However, it is potentially not a member of the Stephenson 2 cluster and also has a distance with an uncertainty of ≳50% due to it only being measured with radial velocities.[17][29] |
Stephenson 2 DFK 49 | 1,300 ± 283[17] | L/Teff | A K-type star similar to the yellow hypergiant IRC +10420 that has left its red supergiant stage.[17] |
HD 143183 (V558 Normae) | 1,261[30] | L/Teff | |
μ Cephei (Herschel's Garnet Star) | 1,259[31] – 1,420,[15] 1,426 +282 −119[e] | L/Teff & AD | Widely recognised as being among the largest known stars.[26] Possibly the largest naked eye star.[32] |
PZ Cassiopeiae | 1,259 – 1,336,[33] 1,585+160 −120[34] | L/Teff & AD | |
RSGC1-F10 | 1,246 ± 292[17] | L/Teff | |
V354 Cephei | 1,245[30] | L/Teff | |
Westerlund 1 W237 (Westerlund 1 BKS B) | 1,241±70[35] | L/Teff | |
ST Cephei | 1,218[30] | L/Teff | |
IRC -10414 | ~1,200[36] | L/Teff | |
V517 Monocerotis | 1,196+80 −159[37] | L/Teff | |
RSGC1-F05 | 1,185 ± 312[17] | L/Teff | |
GCIRS 7 | 1,170±60,[38] 1,359,[39] 1,368[40] | AD & L/Teff | |
Westerlund 1 W26 (Westerlund 1 BKS AS) | 1,165±58–1,221±120[35] | L/Teff | |
EV Carinae | 1,165[41] | L/Teff | |
[A72c] 16 | 1,157[30] | L/Teff | |
WY Velorum A | 1,157[30] | L/Teff | A symbiotic binary.[42] |
RSGC1-F08 | 1,150 ± 259[17] | L/Teff | |
RSGC1-F02 | 1,128 ± 262[17] | L/Teff | |
Orbit of Jupiter | 1,114.5–1,115.8[8][b] | Reported for reference | |
V582 Cassiopeiae | 1,111[30] | L/Teff | |
RW Cygni | 1,103+251 −177[43] | AD | |
RW Cephei | 1,100±40[44] | AD | A K-type hypergiant star that experienced a "great dimming" event in 2022, similar to Betelgeuse. |
RT Carinae | 1,090[15] | L/Teff | |
RSGC1-F04 | 1,082,[45] 1,100,[46] 1,422+305 −390[17] | L/Teff | |
UU Persei | 1,079+9 −8[37] | L/Teff | |
LL Pegasi | 1,074[47] | L/Teff | |
HD 126577 | 1,066+9 −32[37] | L/Teff | |
V766 Centauri Aa | 1,060–1,160[48] | ? | V766 Centauri Aa is a rare variable yellow hypergiant. |
HaroChavira 1 | 1,058[49] | L/Teff | |
CM Velorum | 1,048[30] – 1,416.24+0.40 −0.96[37] | L/Teff | |
AG Camelopardalis | 1,048[30] | L/Teff | |
SU Persei | 1,044+31 −21 – 1,139+34 −23,[24] | AD | |
SW Cephei | 1,035+75 −120[34] | AD | |
KY Cygni | 1,032[49] | L/Teff | |
RSGC1-F11 | 1,032 ± 232[17] | L/Teff | |
BC Cygni | 1,031[49]–1,187+34 −37[37] | L/Teff | A more detailed but older study gives values of 1,081 R☉ (856–1,375) for the year 2000, and 1,303 R☉ (1,021–1,553) for the year 1900.[50] |
MY Cephei | 1,028 ± 169 – 1,138 ± 387[51][f] | L/Teff | |
V346 Puppis | 1,025[52] | L/Teff | |
V530 Cassiopeiae | 1,017[30] | L/Teff | |
RSGC1-F13 | 1,017 ± 246[17] | L/Teff | |
V602 Carinae | 1,015[53] | AD | |
VV Cephei A | 1,015[54] | AD | A red supergiant star orbited by a smaller B-type main-sequence star with a radius estimated between 13[55] and 25 R☉.[56] Widely recognised as being among the largest known stars.[26] Another estimate give a radius of 660 R☉[30] based on the Gaia DR3 distance of 1 kpc.[37] |
U Lacertae A | 1,013[30] | L/Teff | |
KW Sagittarii | 1,009±142[22][23] | AD | |
Ve 4-64 | 1,007[30] | L/Teff | |
RSGC1-F07 | 1,006 ± 238[17] | L/Teff | |
V349 Carinae | 1,002+12 −74[37] | L/Teff | |
V674 Cephei | 999[30] | L/Teff | |
RSGC1-F09 | 996 ± 498[17] | L/Teff | |
IRAS 18111-2257 | ~990 – 1,200[57] | L/Teff | Estimated based on the bolometric luminosity (14,000–20,000 L☉) and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R☉.[57] |
CZ Hydrae | 986[58] | L/Teff | |
CIT 11 | 982[30] | L/Teff | |
V381 Cephei Aa | 977[30] | L/Teff | |
MSX6C G086.5890–00.7718 | (975+175 −183–1,035+186 −158)[59]–1,196.91+6.31 −6.35[37] | L/Teff | Lower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. |
V3953 Sagittarii (IRC −30398) | 970[60] | L/Teff | |
V396 Centauri | 965[30] | L/Teff | |
UW Aquilae | 964[30] | L/Teff | |
RSGC1-F12 | 955 ± 226[17] | L/Teff | |
RSGC1-F03 | 942 ± 196[17] | L/Teff | |
V398 Cassiopeiae (HD 240275) | 941[30] | L/Teff | |
IRC +60342 | 940[30] | L/Teff | |
ψ1 Aurigae | 934[30] | L/Teff | |
GX Monocerotis | 931[60] | L/Teff | |
V645 Cephei | 920[30] | L/Teff | |
S Cassiopeiae | 920[60] | L/Teff | One of the coolest known stars, at an effective temperature of 1800 K (1500 °C). |
NV Aurigae (IRC +50137) | 918[60] | L/Teff | |
Stephenson 2 DFK 5 | 911 ± 182[17] | L/Teff | |
UY Scuti | 909[30] | L/Teff | Initially reported 1,708 R☉, making it the largest star, a 2023 measurement put the radius at a smaller value of 909 R☉ based on the multimessenger monitoring of supernovae.[30] |
NR Vulpeculae | 908[30] – 923+62 −50[34] | L/Teff | |
KU Andromedae (IRC +40004) | 900[61] – 1,044 | L/Teff | |
V774 Sagittarii | 889[30] | L/Teff | |
V923 Centauri | 881[30] | L/Teff | |
IRAS 20341+4047 | 880[30] | L/Teff | |
V540 Sagittarii | 880[30] | L/Teff | |
V386 Cephei | 879[30] | L/Teff | |
Trumpler 27-1 (CD-33 12241) | 876+5 −12[37] | ? | |
T Lyrae | 876[60] | L/Teff | |
TYC 3996-552-2 | 870[30] | L/Teff | |
V1300 Aquilae (IRC −10529) | 858[61]–1,059 | L/Teff | |
V1417 Aquilae | 866[62] | L/Teff | |
Westerlund 1 W20 (Westerlund 1 BKS D) | 858±48[35] | L/Teff | |
FX Serpentis | 857[52] | L/Teff | |
AZ Cygni | 856+20 −14 – 927+21 −15[24] | AD | Estimated based on data from the CHARA array. Another radii of 890+21 −15 R☉ (2014), 895+21 −15 R☉ (2015) and 890+21 −15 R☉ (2016) are calculated based on the same data.[24] |
V348 Velorum | 855[30] | L/Teff | |
Stephenson 2 DFK 3 | 965 ± 208[17] | L/Teff | |
BI Cygni | 852+12 −9 – 908+12 −10[24] | AD | |
TW Carinae | 835[30] | L/Teff | |
V358 Cassiopeiae | 835[30] | L/Teff | |
VLH96 A | 833[63] | L/Teff | |
DO 26226 | 826[30] | L/Teff | |
HD 155737 | 823[30] | L/Teff | |
6 Geminorum | 821[24] | L/Teff | |
RW Leonis Minoris | L/Teff | ||
HaroChavira 2 | 813[49] | L/Teff | |
HD 300933 A | 806[30] | L/Teff | |
[W61c] R 53 | 801[30] | L/Teff | |
U Arietis | 801±205[65] | AD | |
RT Ophiuchi | 801±217[65] | AD | |
HD 95687 | 797[30] | L/Teff | |
BO Carinae | 790±158[15] | L/Teff | |
HD 62745 | 790[30] | L/Teff | |
WX Piscium | 790[66] – 1,044[60] | L/Teff | |
VR5–7 | 775 ± 65[67] | L/Teff | |
T Cancri | 770[52] | L/Teff | |
V Cygni | 770[62] | L/Teff | |
CL Carinae | 770[30] | L/Teff | |
RS Persei | 770±30,[68] 775+110 −85[34] | AD | |
V355 Cephei | 770±154[15] – 790[30] | L/Teff | |
BD+63 3 | 770[30] | L/Teff | |
BD+63 270 | 769[30] | L/Teff | |
V644 Cephei | 765[30] | L/Teff | |
BM VIII 11 | 754[30] | L/Teff | |
[SLN74] 2130 | 752[30] | L/Teff | |
IRAS 10176-5802 | 751.2+0.4 −0.6[37]–(793+281 −152–849+172 −133)[59] | L/Teff | Lower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). |
HD 303250 | 750±150[15] | L/Teff | |
R Leporis (Hind's Crimson Star) | 750[69] | AD | Size range from 645 to 860 R☉. |
V384 Persei | 750[61] – 937[60] | L/Teff | |
V466 Persei | 750[64] | L/Teff | |
V Coronae Borealis | 749[61] | L/Teff | |
GY Aquilae | 748[23] – 920[70] | AD | |
TT Centauri | 744[60] | L/Teff | |
UU Pegasi | 742±193[65] | AD | |
IM Cassiopeiae | 740[30] | L/Teff | |
GY Camelopardalis | 736[61] | L/Teff | |
RSGC3-S3 | 735 ± 151[17] | L/Teff | |
R Andromedae | 733[61] | L/Teff | |
Stephenson 2 DFK 10 | 730[17] | L/Teff | |
V1259 Orionis | 729[58] | L/Teff | |
RSGC3-S15 | 728 ± 138[17] | L/Teff | |
HD 105563 A | 723[30] | L/Teff | |
Westerlund 1 W75 (Westerlund 1 BKS E) | 722±36[35] | L/Teff | |
V1111 Ophiuchi (IRC +10365) | 721[61] – 902[60] | L/Teff | |
XX Persei | 718+80 −56[34] | AD | Another study from the same author estimates 681+12 −9 R☉.[24] |
AI Volantis | 717[61] | L/Teff | |
RX Telescopii | 716[30] | L/Teff | |
V Camelopardalis | 716±185[65] | AD | |
CD-61 3575 | 716[30] | L/Teff | |
S Cephei | 715[52] | L/Teff | |
AS Cephei | 713[30] | L/Teff | |
V770 Cassiopeiae (BD+60 299) | 713[30] | L/Teff | |
AZ Cephei | 712[30] | L/Teff | |
MZ Puppis | 708[30] | L/Teff | |
GP Cassiopeiae | 707[30] – 771.74+0.23 −0.86[37] | L/Teff | |
GCIRS 12N | 703 ± 107[67] | L/Teff | |
V528 Carinae | 700±140[15] | L/Teff | |
The following well-known stars are listed for the purpose of comparison. | |||
Antares (α Scorpii A) | 680[71] | AD | Fourteenth brightest star in the night sky.[72] Widely recognised as being among the largest known stars.[26] |
Betelgeuse (α Orionis) | 640,[73] 764+116 −62,[74] 782 ± 55[75] | AD & SEIS | Tenth brightest star in the night sky.[72] Widely recognised as being among the largest known stars,[26] radius decreased to ~500 R☉ during the 2020 great dimming event.[76] |
R Horologii | 635[61] | L/Teff | A red giant star with one of the largest ranges in brightness known of stars in the night sky visible to the unaided eye. Despite its large radius, it is less massive than the Sun. |
119 Tauri (CE Tauri, Ruby Star) | 587 – 593[77] | AD | |
ρ Cassiopeiae | 564±67 – 700±112[78] | AD | A yellow hypergiant star, similar to V382 Carinae, that is also visble to the naked eye. |
CW Leonis | 560[79] | L/Teff | The nearest carbon star. |
V509 Cassiopeiae | 511±112[44] | AD | A variable yellow hypergiant whose size varied from around 680 R☉ in 1950–1970 to 910 R☉ in 1977, and later decreased to 390 R☉ in the 1990s.[80] |
V382 Carinae (x Carinae) | 485 ± 56[81] | L/Teff | A yellow hypergiant, one of the rarest types of stars. |
V838 Monocerotis | 464[82] | L/Teff | During the 2002 Red Nova, the star's radius may have increased up to 3,190 R☉.[83] |
Pistol Star (V4647 Sagittarii) | 420[84] | L/Teff | One of the most luminous stars known. |
La Superba (Y Canum Venaticorum) | 344[85] | L/Teff | |
Mira (ο Ceti A) | 332–402[86] | AD | Prototype of the Mira variables. |
Orbit of Mars | 322–323.1[8][b] | Reported for reference | |
R Doradus | 298±21[87] | AD | The extrasolar star with the largest apparent size. |
Rasalgethi (α Herculis A) | 284±60 (264–303)[88] | L/Teff | |
Cygnus OB2#12 | 246[89] | ? | One of the most massive and luminous stars known. |
Orbit of Earth (~1 AU) | 214[8][b] | Reported for reference | |
Suhail (λ Velorum) | 211±6[90] | AD | |
Deneb (α Cygni) | 203±17[91] | ? | Eighteenth brightest star in the night sky.[72] |
Wezen (δ Canis Majoris) | 188[92] | L/Teff | Thirty-sixth brightest star in the night sky.[72] |
Enif (ε Pegasi) | 178[92] | L/Teff | |
Orbit of Venus | 158.6[8][b] | Reported for reference | |
η Carinae A | 128 – 742[93] | OD | During the 1843 Great Eruption, the star's radius may have increased up to 4,319–6,032 R☉.[94] |
Orbit of Mercury | 82.9–84.6[8][b] | Reported for reference | |
Rigel (β Orionis A) | 74.1+6.1 −7.3[95] | AD | Seventh brightest star in the night sky. |
Canopus (α Carinae) | 73.3[96] | AD | Second brightest star in the night sky. |
Gacrux (γ Crucis) | 73[97] | L/Teff | Twenty-sixth brightest star in the night sky. |
Polaris (α Ursae Minoris) | 46.27±0.42[98] | AD | The current star in the North Pole. It is a Classical Cepheid variable, and the brightest example of its class. |
Aldebaran (α Tauri) | 45.1±0.1[99] | AD | Fourteenth brightest star in the night sky. |
Arcturus (α Boötis) | 25.4 ± 0.2[100] | AD | This is the nearest red giant to the Earth, and the fourth brightest star in the night sky. |
Pollux (β Geminorum) | 9.06 ± 0.03[95] | AD | The nearest giant star to the Earth. |
Spica (α Virginis A) | 7.47±0.54[101] | One of the nearest supernova candidates and the sixteenth-brightest star in the night sky. | |
Regulus (α Leonis A) | 4.16 × 3.14[102] | The nearest B-type star to the Earth. | |
Vega (α Lyrae) | 2.726±0.006 × 2.418±0.012[103] | AD | Fifth brightest star in the night sky.[72] |
Altair (α Aquilae) | 2.01 × 1.57[104] | Twelfth brightest star in the night sky. | |
Sirius (α Canis Majoris A) | 1.713[105] | AD | The brightest star in the night sky. |
Rigil Kentaurus (α Centauri A) | 1.2175[106] | AD | Third brightest star in the night sky. |
Sun | 1 | The largest object in the Solar System. |
Magellanic Clouds
Star name | Solar radii (Sun = 1) | Galaxy | Method[a] | Notes |
---|---|---|---|---|
WOH G64 | 1,540[9][10][11][12][13] ± 77[9] | Large Magellanic Cloud | L/Teff | Surrounded by a large torus-shaped dust envelope.[107][108] The largest known star with a well-defined radius.[9][10][14][11] |
HV 888 | 1,477[109]–1,584[12] | Large Magellanic Cloud | L/Teff | |
HD 269551 A | 1,439[110] | Large Magellanic Cloud | L/Teff | |
HV 12463 | 1,420[110] | Large Magellanic Cloud | L/Teff | |
IRAS 05280–6910 | 1,367[111] | Large Magellanic Cloud | L/Teff | The most reddened object in the Large Magellanic Cloud.[12] |
MSX LMC 597 | 1,278[112]–1,444[12] | Large Magellanic Cloud | L/Teff | |
OGLE BRIGHT-LMC-LPV-52 | 1,275[110]–1,384[112] | Large Magellanic Cloud | ||
HV 2834 | 1,253[112] | Large Magellanic Cloud | L/Teff | |
LMC 145013 | 1,243[110] | Large Magellanic Cloud | L/Teff | |
IRAS 05346-6949 | 1,211[113] | Large Magellanic Cloud | L/Teff | It has an estimated mass-loss rate of 0.0017 M☉ (566 Earths) per year, the highest for any star.[113] |
HV 5618 | 1,163[110] | Large Magellanic Cloud | L/Teff | |
HV 2242 | 1,160[114] – 1,180[110] | Large Magellanic Cloud | L/Teff | |
LMC 25320 | 1,156[110] | Large Magellanic Cloud | L/Teff | |
SMC 18592 | 1,129[110] | Small Magellanic Cloud | L/Teff | |
MSX SMC 018 | 1,119[113] | Small Magellanic Cloud | L/Teff | |
LMC252 | 1,117[110]–1,164[112] | Large Magellanic Cloud | ||
LMC045 | 1,112[110] | Large Magellanic Cloud | L/Teff | |
SP77 21-12 | 1,103[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 810 | 1,104[112] | Large Magellanic Cloud | L/Teff | |
WOH S338 | 1,100[114] | Large Magellanic Cloud | L/Teff | |
LMC 136042 | 1,092[110] | Large Magellanic Cloud | L/Teff | |
LMC 175188 | 1,090[110]–1,317[112] | Large Magellanic Cloud | ||
IRAS 04516-6902 | 1,085[111] | Large Magellanic Cloud | L/Teff | |
WOH S274 | 1,071[110] | Large Magellanic Cloud | L/Teff | |
[W60] D44 | 1,063[110] | Large Magellanic Cloud | L/Teff | |
HV 12233 | 1,057[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 589 | 1,051[112] | Large Magellanic Cloud | L/Teff | |
MSX LMC 947 | 1,050[112] | Large Magellanic Cloud | L/Teff | |
LMC 144217 | 1,039[110] | Large Magellanic Cloud | ||
SP77 31-18 | 1,038[110] | Large Magellanic Cloud | L/Teff | |
IRAS 05402-6956 | 1,032[111] | Large Magellanic Cloud | L/Teff | |
IRAS 04509-6922 | 1,027[111]–1,187[112] | Large Magellanic Cloud | L/Teff | |
HV 2255 | 1,027[110]–1,236[112] | Large Magellanic Cloud | ||
TRM 36 | 1,019[110] | Large Magellanic Cloud | L/Teff | |
LMC 175549 | 1,005[110] | Large Magellanic Cloud | L/Teff | |
TRM 89 | 1,004[110]–1,526[112] | Large Magellanic Cloud | ||
B90 (WOH S264) | 1000+70 −80 – 1,210[115] | Large Magellanic Cloud | L/Teff | Has an unusually high metallicity and velocity.[115] Often referred to as its SIMBAD designation [W60] B90. Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from the Titanium(II) oxide bands. |
HV 2450 | 1,000+2 −1[116]–1,071[116] | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
LMC 149767 | 994[110] | Large Magellanic Cloud | L/Teff | |
UCAC2 2674864 (HV 2834) | 990+115 −100[10] | Large Magellanic Cloud | L/Teff | |
HV 996 | 988[110]–1,176[112] | Large Magellanic Cloud | ||
W61 8–88 | 986[110] | Large Magellanic Cloud | L/Teff | |
HV 2362 | 982[110] – 1,030[114] | Large Magellanic Cloud | L/Teff | |
MG73 59 | 979[117] | Large Magellanic Cloud | L/Teff | A yellow supergiant. |
HD 268757 | 979[117] | Large Magellanic Cloud | L/Teff | A G8 yellow hypergiant. |
SMC 56389 | 976[110] | Small Magellanic Cloud | L/Teff | |
LMC 136404 | 974[110] | Large Magellanic Cloud | L/Teff | |
SP77 46-32 | 973[110]–1,133[112] | Large Magellanic Cloud | ||
HV 2084 | 967[110]–1,083[112] | Small Magellanic Cloud | ||
WOH S74 | 965[110]–1,014[112] | Large Magellanic Cloud | L/Teff | |
SMC 10889 | 963[110] | Small Magellanic Cloud | L/Teff | |
TRM 67 | 951[110] | Large Magellanic Cloud | L/Teff | |
LHA 120-S 26 | 951[110] | Large Magellanic Cloud | L/Teff | |
LMC 139413 | 951[110] | Large Magellanic Cloud | L/Teff | |
TRM 87 | 947[110] | Large Magellanic Cloud | L/Teff | |
LMC 148035 | 947[110] | Large Magellanic Cloud | L/Teff | |
HV 12802 | 946[110]–1,377[112] | Large Magellanic Cloud | ||
SMC 018136 | 945[110] | Small Magellanic Cloud | L/Teff | |
LMC 142202 | 943[110] | Large Magellanic Cloud | L/Teff | |
LMC 147199 | 939[110] – 990[114] | Large Magellanic Cloud | L/Teff | |
SP77 37-24 | 936[110] | Large Magellanic Cloud | L/Teff | |
LMC 148381 | 932[110] | Large Magellanic Cloud | L/Teff | |
LMC 23095 | 926[112] – 1,280[110] | Large Magellanic Cloud | L/Teff | |
SP77 31-16 | 923±28[116] | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
LMC 170452 | 920[110] | Large Magellanic Cloud | L/Teff | |
SP77 44-5 | 918[110] | Large Magellanic Cloud | L/Teff | |
LMC 66778 | 915[110] – 990[114] | Large Magellanic Cloud | L/Teff | |
NGC371 R20 | 913[118] | Small Magellanic Cloud | L/Teff | |
LMC 150040 | 911[110] | Large Magellanic Cloud | L/Teff | |
HV 2236 | 911[110]–971[112] | Large Magellanic Cloud | L/Teff | |
TRM 108 | 906[110] | Large Magellanic Cloud | L/Teff | |
LMC 169142 | 902[110] | Large Magellanic Cloud | L/Teff | |
WOH S457 | 902±45[119] | Large Magellanic Cloud | L/Teff | |
IRAS 04498-6842 (LI-LMC 60) | 898[111] – 1,137[112] – 1,765,[12] 1,224[110] | Large Magellanic Cloud | L/Teff | Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R☉.[12] |
LMC 135720 | 898[110] | Large Magellanic Cloud | L/Teff | |
SMC 81961 | 892[110] | Small Magellanic Cloud | L/Teff | |
SP77 44-19 | 891[110]–1,297[112] | Large Magellanic Cloud | L/Teff | |
SP77 45–49 | 890[110] | Large Magellanic Cloud | L/Teff | |
LMC 175464 | 892[112]–982[110] | Large Magellanic Cloud | ||
SMC 49478 | 888[110] | Small Magellanic Cloud | L/Teff | |
HV 12185 | 890+55 −65[10] | Large Magellanic Cloud | L/Teff | |
SP77 45–53 | 885[112]–981[110] | Large Magellanic Cloud | ||
LMC 170079 | 882[110] | Large Magellanic Cloud | L/Teff | |
SMC 5092 | 880[110] | Small Magellanic Cloud | L/Teff | |
HV 12793 | 880+45 −65[10] | Large Magellanic Cloud | L/Teff | |
W61 21–22 | 877[110] | Large Magellanic Cloud | L/Teff | |
SP77 35-1 | 877[110] | Large Magellanic Cloud | L/Teff | |
UCAC3 43-23216 | 873[110] | Large Magellanic Cloud | L/Teff | |
HV 11423 | 872[110] | Small Magellanic Cloud | L/Teff | |
WOH S57 | 875+70 −60[10] | Large Magellanic Cloud | L/Teff | |
SP77 53-3 | 870[110] | Large Magellanic Cloud | L/Teff | |
SP77 36-14 | 870[110] | Large Magellanic Cloud | L/Teff | |
SP77 31-19 | 870[110] | Large Magellanic Cloud | L/Teff | |
LMC 158646 | 865[110] | Large Magellanic Cloud | L/Teff | |
SP77 31-20 | 864[110] | Large Magellanic Cloud | L/Teff | |
LMC 113364 | 864[110] | Large Magellanic Cloud | L/Teff | |
SMC 83202 | 864[110] | Small Magellanic Cloud | L/Teff | |
LMC 175746 | 863[110] | Large Magellanic Cloud | L/Teff | |
LMC207 | 863[110] | Large Magellanic Cloud | L/Teff | |
SP77 29-8 | 858[110] | Large Magellanic Cloud | L/Teff | |
SP77 54-38 | 859[112]–911[110] | Large Magellanic Cloud | ||
LMC 174714 | 855[110]–965[112] | Large Magellanic Cloud | ||
LMC 176135 | 854[110] | Large Magellanic Cloud | L/Teff | |
LMC178 | 845[110] | Large Magellanic Cloud | L/Teff | |
SP77 31-26 | 845[110] | Large Magellanic Cloud | L/Teff | |
LMC 106201 | 844[110] | Large Magellanic Cloud | L/Teff | |
SP77 48-13 | 838[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 1318 | 837[110] | Large Magellanic Cloud | L/Teff | |
SP77 28-13 | 835[110] | Large Magellanic Cloud | L/Teff | |
LMC 143898 | 833[110] | Large Magellanic Cloud | L/Teff | |
TYC 9161-866-1 | 833[110] | Large Magellanic Cloud | L/Teff | |
SMC 59803 | 829[110] | Small Magellanic Cloud | L/Teff | |
LMC 157401 | 828[110] | Large Magellanic Cloud | L/Teff | |
SP77 39-22 | 828[110] | Large Magellanic Cloud | L/Teff | |
WOH S52 | 828[110] | Large Magellanic Cloud | L/Teff | |
SP77 30-22 | 826[110] | Large Magellanic Cloud | L/Teff | |
LMC 145728 | 826[110] | Large Magellanic Cloud | L/Teff | |
LMC 169049 | 825[110] | Large Magellanic Cloud | L/Teff | |
SP77 46-34 | 825[110] | Large Magellanic Cloud | L/Teff | |
LMC 177997 | 825[112]–867[110] | Large Magellanic Cloud | ||
SP77 28-2 | 825±60[10] | Large Magellanic Cloud | L/Teff | |
SP77 22-9 | 823[110] – 850[114] | Large Magellanic Cloud | L/Teff | |
Z Doradus | 824±108[119]–956[112] | Large Magellanic Cloud | L/Teff | |
WOH S421 | 822[110]–840[112] | Large Magellanic Cloud | ||
LMC 72727 | 822[110] | Large Magellanic Cloud | L/Teff | |
SP77 37-28 | 821[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 575 | 816[110]–933[112] | Large Magellanic Cloud | ||
LMC 143035 | 815[110] | Large Magellanic Cloud | L/Teff | |
WOH S49 | 815[110] | Large Magellanic Cloud | L/Teff | |
SP77 52-28 | 812[110] | Large Magellanic Cloud | L/Teff | |
SHV 0520422-693821 | 808[110] | Large Magellanic Cloud | L/Teff | |
HD 268850 | 808[112]–898[110] | Large Magellanic Cloud | ||
SMC 20133 | 809[112]–835[110] | Small Magellanic Cloud | ||
SMC 25888 | 804[110] | Small Magellanic Cloud | L/Teff | |
SP77 55-20 | 803[110] | Large Magellanic Cloud | L/Teff | |
PGMW 1058 | 800[110] | Large Magellanic Cloud | L/Teff | |
LMC 145112 | 798[110] | Large Magellanic Cloud | L/Teff | |
SMC 47757 | 795[110] | Small Magellanic Cloud | L/Teff | |
LMC 175709 | 794[110] | Large Magellanic Cloud | L/Teff | |
SMC 46497 | 794[110] | Small Magellanic Cloud | L/Teff | |
WOH S60 | 789[110] | Large Magellanic Cloud | L/Teff | |
WOH S102 | 789[110] | Large Magellanic Cloud | L/Teff | |
LMC 164709 | 787[110] | Large Magellanic Cloud | L/Teff | |
SP77 31-28 | 787[110] | Large Magellanic Cloud | L/Teff | |
TRM 73 | 787[112]–816[110] | Large Magellanic Cloud | ||
SP77 31-21 | 784[110] | Large Magellanic Cloud | L/Teff | |
SMC 8930 | 784[110] | Small Magellanic Cloud | L/Teff | |
PMMR 62 | 784[110] | Small Magellanic Cloud | L/Teff | |
SP77 46-31 | 782[110] | Large Magellanic Cloud | L/Teff | |
LMC211 | 780[110] | Large Magellanic Cloud | L/Teff | |
LMC 140403 | 778[110] | Large Magellanic Cloud | L/Teff | |
LMC 134383 | 778[110]–803[112] | Large Magellanic Cloud | L/Teff | |
SP77 47-11 | 778[110] | Large Magellanic Cloud | L/Teff | |
SP77 40-7 | 778[110] – 810[114] | Large Magellanic Cloud | L/Teff | |
W61 19–24 | 780+50 −70[10] | Large Magellanic Cloud | L/Teff | |
WOH S28 | 780[114] | Large Magellanic Cloud | L/Teff | |
LMC 141568 | 776[110] | Large Magellanic Cloud | L/Teff | |
SP77 51-2 | 776[110] | Large Magellanic Cloud | L/Teff | |
SP77 31–43 | 773[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 833 | 773[110]–849[112] | Large Magellanic Cloud | ||
SP77 52-32 | 772[110] | Large Magellanic Cloud | L/Teff | |
SP77 22-10 | 767[110] | Large Magellanic Cloud | L/Teff | |
SP77 48-6 | 768[120] | Large Magellanic Cloud | L/Teff | |
SMC 12322 | 765[110] | Small Magellanic Cloud | L/Teff | |
WOH S517 | 764[110] | Large Magellanic Cloud | L/Teff | |
WOH S183 | 763[110] | Large Magellanic Cloud | L/Teff | |
LMC256 | 762[110] | Large Magellanic Cloud | L/Teff | |
LMC 154311 | 762[110] | Large Magellanic Cloud | L/Teff | |
LMC 119219 | 762[110] | Large Magellanic Cloud | L/Teff | |
WOH S452 | 762±275[119] | Large Magellanic Cloud | L/Teff | |
MSX SMC 024 | 761[112] | Large Magellanic Cloud | L/Teff | |
WOH S282 | 758[110] | Large Magellanic Cloud | L/Teff | |
LMC 64048 | 758[110] | Large Magellanic Cloud | L/Teff | |
PGMW 3160 | 758[110] | Large Magellanic Cloud | L/Teff | |
WOH S438 | 757±211[119] | Large Magellanic Cloud | L/Teff | |
LMC 61753 | 755[110] | Large Magellanic Cloud | L/Teff | |
LMC 140296 | 754[110] | Large Magellanic Cloud | L/Teff | |
WOH S478 | 753[110] | Large Magellanic Cloud | L/Teff | |
LMC 139027 | 751[110] – 790[114] | Large Magellanic Cloud | L/Teff | |
SP77 45-16 | 749[110] – 800[114] | Large Magellanic Cloud | L/Teff | |
SP77 37-20 | 749[110] | Large Magellanic Cloud | L/Teff | |
SP77 54-27 | 750[114] – 758[110] – 800[114] | Large Magellanic Cloud | L/Teff | |
LMC 155529 | 747[110] | Large Magellanic Cloud | L/Teff | |
LMC 143877 | 746[110] | Large Magellanic Cloud | L/Teff | |
SMC 64663 | 745[110] | Small Magellanic Cloud | L/Teff | |
WOH G302 | 745[110] | Large Magellanic Cloud | L/Teff | |
TRM 65 | 743[110] | Large Magellanic Cloud | L/Teff | |
HV 12149 | 741[110]–767[112] | Small Magellanic Cloud | ||
SMC 50840 | 740[110] | Small Magellanic Cloud | L/Teff | |
SMC 46662 | 740[110]–874[112] | Small Magellanic Cloud | ||
SP77 29-11 | 738[110] | Large Magellanic Cloud | L/Teff | |
SMC 30616 | 737[110] | Small Magellanic Cloud | L/Teff | |
LMC 162635 | 736[110] | Large Magellanic Cloud | L/Teff | |
SP77 39-17 | 736[110] – 760[114] | Large Magellanic Cloud | L/Teff | |
LMC 163466 | 734[110] | Large Magellanic Cloud | L/Teff | |
HV 2310 | 734[112] | Large Magellanic Cloud | L/Teff | |
HD 269723 | 734±17,[116] 814[117]–829[120] | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
SP77 44-17 | 732[110] | Large Magellanic Cloud | L/Teff | |
SP77 38-5a | 732[110] | Large Magellanic Cloud | L/Teff | |
LMC 67982 | 730[110] | Large Magellanic Cloud | L/Teff | |
LHA 120-S 129 | 730[110] | Large Magellanic Cloud | L/Teff | |
PMMR 64 | 730+75 −65[10] | Small Magellanic Cloud | L/Teff | |
SP77 51-15 | 727[110] | Large Magellanic Cloud | L/Teff | |
LMC 168757 | 725[110] | Large Magellanic Cloud | L/Teff | |
LMC 163007 | 725[110] | Large Magellanic Cloud | L/Teff | |
W61 8–14 | 724[110] | Large Magellanic Cloud | L/Teff | |
IRAS 05425-6914 | 724[110] | Large Magellanic Cloud | L/Teff | |
SMC 55188 | 724[110] | Small Magellanic Cloud | L/Teff | |
SP77 44-13 | 721[110] | Large Magellanic Cloud | L/Teff | |
MSX LMC 905 | 719[110] | Large Magellanic Cloud | L/Teff | |
LMC 147928 | 719[110] | Large Magellanic Cloud | L/Teff | |
LH 43-15 | 719[110] – 740[114] | Large Magellanic Cloud | L/Teff | |
PMMR 116 | 717[120] | Small Magellanic Cloud | L/Teff | |
LMC 123778 | 715[110] | Large Magellanic Cloud | L/Teff | |
WOH S314 | 714[110] | Large Magellanic Cloud | L/Teff | |
SP77 61-23 | 713[110] | Large Magellanic Cloud | L/Teff | |
WOH S230 | 713[110] | Large Magellanic Cloud | L/Teff | |
LMC 150396 | 710[110] | Large Magellanic Cloud | L/Teff | |
SP77 48-17 | 709[110] | Large Magellanic Cloud | L/Teff | |
LMC 165242 | 707[110] | Large Magellanic Cloud | L/Teff | |
SP77 51-19 | 707[110] | Large Magellanic Cloud | L/Teff | |
LMC 170539 | 707[110] | Large Magellanic Cloud | L/Teff | |
LMC 154729 | 705[110] | Large Magellanic Cloud | L/Teff | |
OGLE BRIGHT-LMC-LPV-101 | 703[110] | Large Magellanic Cloud | L/Teff | |
MSX SMC 055 | 702[118]–1,557+215 −130[112] | Small Magellanic Cloud | L/Teff | A super-AGB candidate. |
LMC 168290 | 702[110] | Large Magellanic Cloud | L/Teff | |
LMC180 | 702[110] | Large Magellanic Cloud | L/Teff | |
SP77 45-2 | 702[110] | Large Magellanic Cloud | L/Teff | |
SP77 48-6 | 700+29 −28[116] | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
The following well-known stars are listed for the purpose of comparison. | ||||
HV 2112 | 675 – 1,193[121] | Small Magellanic Cloud | L/Teff | It has been previously considered to be a possible Thorne–Żytkow object.[121] |
HV 11417 | 673[112]–798[110] | Small Magellanic Cloud | L/Teff | Candidate Thorne-Zytkow object.[121] |
HD 269953 | 647[117]–720[120] | Large Magellanic Cloud | L/Teff | A yellow hypergiant. |
HD 33579 | 471[120] | Large Magellanic Cloud | L/Teff | The brightest star in the Large Magellanic Cloud. |
S Doradus | 100[122] | Large Magellanic Cloud | L/Teff | A luminous blue variable in the S Doradus instability strip. |
HD 37974 | 99[123] | Large Magellanic Cloud | L/Teff | An unusual blue hypergiant with a large dusty disk.[123] |
R136a1 | 42.7+1.6 −0.9[124] | Large Magellanic Cloud | L/Teff | One of the most luminous and most massive stars. |
BAT 99-98 | 37.5[125] | Large Magellanic Cloud | L/Teff | One of the most luminous and most massive stars. |
HD 5980 A | 24[126] | Small Magellanic Cloud | L/Teff | A luminous blue variable and one of the most luminous stars. |
Andromeda (M31) and Triangulum (M33) galaxies
Star name | Solar radii (Sun = 1) | Galaxy | Method[a] | Notes |
---|---|---|---|---|
LGGS J013339.28+303118.8 | 1,566[127] | Triangulum Galaxy | L/Teff | |
WOH G64 (For comparison) | 1,540[9][10][11][12][13] ± 77[9] | Large Magellanic Cloud | L/Teff | Located in the Large Magellanic Cloud. The largest known star with a well-defined radius.[9][10][14][11] |
LGGS J004428.48+415130.9 | 1,410[128] | Andromeda Galaxy | L/Teff | |
LGGS J013418.56+303808.6 | 1,363[127] | Triangulum Galaxy | L/Teff | |
LGGS J013414.27+303417.7 | 1,342[127]–1,479[110] | Triangulum Galaxy | L/Teff | |
LGGS J004514.91+413735.0 | 1,324[110] | Andromeda Galaxy | L/Teff | |
LGGS J004125.23+411208.9 | 1,302[110] | Andromeda Galaxy | L/Teff | |
LGGS J013350.62+303230.3 | 1,283[110] | Triangulum Galaxy | L/Teff | |
LGGS J004312.43+413747.1 | 1,279[110] | Andromeda Galaxy | L/Teff | |
LGGS J003951.33+405303.7 | 1,272[110] | Andromeda Galaxy | L/Teff | |
LGGS J013416.52+305155.4 | 1,227[110] | Triangulum Galaxy | L/Teff | |
LGGS J004416.83+411933.2 | 1,209[110] | Andromeda Galaxy | L/Teff | |
LGGS J004531.13+414825.7 | 1,201[110] | Andromeda Galaxy | L/Teff | |
2MASS J01343365+3046547 | 1,196[110] | Triangulum Galaxy | L/Teff | |
LGGS J013409.63+303907.6 | 1,182[110] | Triangulum Galaxy | L/Teff | |
LGGS J004133.18+411217.2 | 1,180[110] | Andromeda Galaxy | L/Teff | |
LGGS J004455.90+413035.2 | 1,172[110] | Andromeda Galaxy | L/Teff | |
LGGS J013352.96+303816.0 | 1,163[110] | Andromeda Galaxy | L/Teff | |
LGGS J004047.22+404445.5 | 1,162[110] | Andromeda Galaxy | L/Teff | |
LGGS J004254.18+414033.6 | 1,154[110] | Andromeda Galaxy | L/Teff | |
LGGS J004428.48+415130.9 | 1,130[110] | Andromeda Galaxy | L/Teff | |
LGGS J013414.27+303417.7 | 1,129[127] | Triangulum Galaxy | L/Teff | |
LGGS J004035.08+404522.3 | 1,122[110] | Andromeda Galaxy | L/Teff | |
LGGS J013341.98+302102.0 | 1,119[110] | Triangulum Galaxy | L/Teff | |
LGGS J013307.37+304543.2 | 1,119[110] | Triangulum Galaxy | L/Teff | |
LGGS J004218.33+412633.9 | 1,111[110] | Andromeda Galaxy | L/Teff | |
LGGS J004102.54+403426.5 | 1,108[110] | Andromeda Galaxy | L/Teff | |
LGGS J013335.90+303344.5 | 1,104[110] | Triangulum Galaxy | L/Teff | |
LGGS J013358.54+303419.9 | 1,103[110] | Triangulum Galaxy | L/Teff | |
LGGS J013414.49+303511.6 | 1,102[110] | Triangulum Galaxy | L/Teff | |
LGGS J013336.64+303532.3 | 1,102[110]–1,408[127] | Triangulum Galaxy | L/Teff | |
LGGS J004259.34+413726.0 | 1,094[110] | Andromeda Galaxy | L/Teff | |
LGGS J004509.98+414627.5 | 1,089[110] | Andromeda Galaxy | L/Teff | |
LGGS J013241.94+302047.5 | 1,083[110] | Triangulum Galaxy | L/Teff | |
LGGS J004034.74+404459.6 | 1,078[110] | Andromeda Galaxy | L/Teff | |
LGGS J004059.50+404542.6 | 1,071[110] | Andromeda Galaxy | L/Teff | |
LGGS J013430.75+303218.8 | 1,067[110] | Triangulum Galaxy | L/Teff | |
LGGS J013412.27+305314.1 | 1,063[110]–1,066[127] | Triangulum Galaxy | L/Teff | |
LGGS J013328.17+304741.5 | 1,063[110] | Triangulum Galaxy | L/Teff | |
LGGS J004524.97+420727.2 | 1,059[110] | Andromeda Galaxy | L/Teff | |
LGGS J013233.77+302718.8 | 1,058[110]–1,129[127] | Triangulum Galaxy | L/Teff | |
LGGS J004125.72+411212.7 | 1,058[110] | Andromeda Galaxy | L/Teff | |
LGGS J004114.18+403759.8 | 1,058[110] | Andromeda Galaxy | L/Teff | |
LGGS J013307.60+304259.0 | 1,051[110] | Triangulum Galaxy | L/Teff | |
LGGS J004103.67+410211.8 | 1,047[110] | Andromeda Galaxy | L/Teff | |
LGGS J013305.48+303138.5 | 1,046[110] | Triangulum Galaxy | L/Teff | |
LGGS J004442.41+412649.5 | 1,040[110] | Andromeda Galaxy | L/Teff | |
LGGS J013403.87+303753.2 | 1,040[110] | Triangulum Galaxy | L/Teff | |
LGGS J013351.47+303640.3 | 1,034[110] | Triangulum Galaxy | L/Teff | |
LGGS J004306.62+413806.2 | 1,028[110] | Andromeda Galaxy | L/Teff | |
LGGS J013303.54+303201.2 | 1,027[110]–1,131[127] | Triangulum Galaxy | L/Teff | |
LGGS J004234.41+405855.9 | 1,023[110] | Andromeda Galaxy | L/Teff | |
LGGS J004051.31+404421.7 | 1,022[110] | Andromeda Galaxy | L/Teff | |
LGGS J004031.00+404311.1 | 1,011[110] | Andromeda Galaxy | L/Teff | |
LGGS J013406.20+303913.6 | 1,009[110] | Triangulum Galaxy | L/Teff | |
LGGS J013344.10+304425.1 | 1,007[110] | Triangulum Galaxy | L/Teff | |
LGGS J004307.36+405852.2 | 1,007[110] | Andromeda Galaxy | L/Teff | |
LGGS J013407.13+303929.5 | 994[110] | Triangulum Galaxy | L/Teff | |
LGGS J013312.35+303033.9 | 993[110] | Triangulum Galaxy | L/Teff | |
LGGS J013330.05+303145.9 | 988[110] | Triangulum Galaxy | L/Teff | |
LGGS J013350.84+304403.1 | 984[110] | Triangulum Galaxy | L/Teff | |
LGGS J013329.47+301848.3 | 981[110] | Triangulum Galaxy | L/Teff | |
LGGS J004148.74+410843.0 | 981[110] | Andromeda Galaxy | L/Teff | |
LGGS J004415.76+411750.7 | 977[110] | Andromeda Galaxy | L/Teff | |
LGGS J004127.44+411240.7 | 977[110] | Andromeda Galaxy | L/Teff | |
LGGS J013312.75+303946.1 | 975[110] | Triangulum Galaxy | L/Teff | |
LGGS J004027.36+410444.9 | 973[110] | Andromeda Galaxy | L/Teff | |
LGGS J013434.35+302627.3 | 973[110] | Triangulum Galaxy | L/Teff | |
LGGS J013423.29+305655.0 | 993[110]–972[127] | Triangulum Galaxy | L/Teff | |
LGGS J013319.13+303642.5 | 970[110] | Triangulum Galaxy | L/Teff | |
LGGS J004305.77+410742.5 | 969[110] | Andromeda Galaxy | L/Teff | |
LGGS J013403.73+304202.4 | 965[110]–1,032[127] | Triangulum Galaxy | L/Teff | |
LGGS J004346.10+411138.8 | 962[110] | Andromeda Galaxy | L/Teff | |
LGGS J004419.20+412343.7 | 959[110] | Andromeda Galaxy | L/Teff | |
LGGS J013353.91+302641.8 | 959[110]–1,008[127] | Triangulum Galaxy | L/Teff | |
LGGS J013315.23+305329.0 | 958[110] | Triangulum Galaxy | L/Teff | |
LGGS J013315.23+305329.0 | 956[127] | Triangulum Galaxy | L/Teff | |
LGGS J004138.35+412320.7 | 954[110] | Andromeda Galaxy | L/Teff | |
LGGS J004419.45+411749.5 | 950[110] | Andromeda Galaxy | L/Teff | |
LGGS J013413.95+303339.6 | 948[110] | Triangulum Galaxy | L/Teff | |
LGGS J013336.42+303530.9 | 947[110] | Triangulum Galaxy | L/Teff | |
LGGS J004047.82+410936.4 | 943[110] | Andromeda Galaxy | L/Teff | |
LGGS J013258.18+303606.3 | 943[110] | Triangulum Galaxy | L/Teff | |
LGGS J004447.74+413050.0 | 938[110] | Andromeda Galaxy | L/Teff | |
2MASS J01343131+3046088 | 938[110] | Triangulum Galaxy | L/Teff | |
LGGS J004346.18+411515.0 | 936[110] | Andromeda Galaxy | L/Teff | |
LGGS J004304.62+410348.4 | 936[110] | Andromeda Galaxy | L/Teff | |
LGGS J004458.28+413154.3 | 933[110] | Andromeda Galaxy | L/Teff | |
LGGS J004102.82+410422.3 | 933[110] | Andromeda Galaxy | L/Teff | |
LGGS J013344.33+303636.0 | 932[110] | Triangulum Galaxy | L/Teff | |
LGGS J004631.49+421133.1 | 932[110] | Andromeda Galaxy | L/Teff | |
LGGS J013321.44+304045.4 | 932[110]–1,015[127] | Triangulum Galaxy | L/Teff | |
LGGS J013358.04+304900.1 | 931[110] | Triangulum Galaxy | L/Teff | |
LGGS J013314.31+302952.9 | 1,067[110]–930[127] | Triangulum Galaxy | L/Teff | |
LGGS J013315.97+303153.7 | 929[110] | Triangulum Galaxy | L/Teff | |
LGGS J004126.14+403346.5 | 927[110] | Andromeda Galaxy | L/Teff | |
LGGS J004347.31+411203.6 | 925[110] | Andromeda Galaxy | L/Teff | |
LGGS J004252.78+405627.5 | 923[110] | Andromeda Galaxy | L/Teff | |
LGGS J013411.54+303312.6 | 918[110] | Triangulum Galaxy | L/Teff | |
LGGS J013357.08+303817.8 | 918[110] | Triangulum Galaxy | L/Teff | |
LGGS J003943.89+402104.6 | 917[110] | Andromeda Galaxy | L/Teff | |
LGGS J004503.35+413026.3 | 916[110] | Andromeda Galaxy | L/Teff | |
LGGS J013338.97+303828.9 | 915[110] | Triangulum Galaxy | L/Teff | |
LGGS J013330.27+303510.6 | 915[110] | Triangulum Galaxy | L/Teff | |
LGGS J004033.06+404303.1 | 912[110] | Andromeda Galaxy | L/Teff | |
LGGS J004357.15+411136.6 | 911[110] | Andromeda Galaxy | L/Teff | |
LGGS J004406.60+411536.6 | 911[110] | Andromeda Galaxy | L/Teff | |
LGGS J013312.38+302453.2 | 911[110]–952[127] | Triangulum Galaxy | L/Teff | |
LGGS J004451.76+420006.0 | 911[110] | Andromeda Galaxy | L/Teff | |
LGGS J013322.82+301910.9 | 934[110]–911[127] | Triangulum Galaxy | L/Teff | |
LGGS J013355.56+304120.9 | 908[110] | Triangulum Galaxy | L/Teff | |
LGGS J004034.40+403627.4 | 907[110] | Andromeda Galaxy | L/Teff | |
LGGS J003910.56+402545.6 | 906[110] | Andromeda Galaxy | L/Teff | |
LGGS J004142.43+411814.1 | 906[110] | Andromeda Galaxy | L/Teff | |
LGGS J013316.57+303051.9 | 902[110] | Triangulum Galaxy | L/Teff | |
LGGS J013245.59+303518.7 | 900[110] | Triangulum Galaxy | L/Teff | |
LGGS J004034.67+404322.5 | 898[110] | Andromeda Galaxy | L/Teff | |
LGGS J004027.65+405126.7 | 898[110] | Andromeda Galaxy | L/Teff | |
LGGS J004322.75+411101.8 | 895[110] | Andromeda Galaxy | L/Teff | |
LGGS J004116.47+410813.7 | 895[110] | Andromeda Galaxy | L/Teff | |
LGGS J013306.33+303208.2 | 894[110] | Triangulum Galaxy | L/Teff | |
LGGS J004039.12+404252.3 | 894[110] | Andromeda Galaxy | L/Teff | |
LGGS J004433.96+415414.8 | 893[110] | Andromeda Galaxy | L/Teff | |
LGGS J013454.31+304109.8 | 891[127] | Triangulum Galaxy | L/Teff | |
LGGS J004030.64+404246.2 | 890[110] | Andromeda Galaxy | L/Teff | |
LGGS J004252.67+413615.2 | 889[110] | Andromeda Galaxy | L/Teff | |
LGGS J013349.94+302928.8 | 888[110] | Triangulum Galaxy | L/Teff | |
2MASS J01335010+3039106 | 886[110] | Triangulum Galaxy | L/Teff | |
LGGS J013357.37+304558.7 | 886[110] | Triangulum Galaxy | L/Teff | |
LGGS J013338.77+303532.9 | 885[110] | Triangulum Galaxy | L/Teff | |
LGGS J013359.20+303212.1 | 884[110] | Triangulum Galaxy | L/Teff | |
LGGS J013340.42+303131.3 | 880[110] | Triangulum Galaxy | L/Teff | |
LGGS J004511.40+413717.8 | 880[110] | Andromeda Galaxy | L/Teff | |
LGGS J013352.16+303902.2 | 880[110] | Triangulum Galaxy | L/Teff | |
LGGS J004219.25+405116.4 | 880[110] | Andromeda Galaxy | L/Teff | |
LGGS J004331.90+411145.0 | 880[110] | Andromeda Galaxy | L/Teff | |
2MASS J01333718+3038206 | 879[110] | Triangulum Galaxy | L/Teff | |
LGGS J013415.42+302816.4 | 876[110] | Triangulum Galaxy | L/Teff | |
LGGS J013345.01+302105.1 | 876[110] | Triangulum Galaxy | L/Teff | |
LGGS J004107.23+411636.8 | 870[110] | Andromeda Galaxy | L/Teff | |
LGGS J013417.83+303356.0 | 867[110] | Triangulum Galaxy | L/Teff | |
LGGS J004120.25+403838.1 | 867[110] | Andromeda Galaxy | L/Teff | |
LGGS J004402.38+412114.9 | 866[110] | Andromeda Galaxy | L/Teff | |
2MASS J01334194+3038565 | 866[110] | Triangulum Galaxy | L/Teff | |
LGGS J013309.10+303017.8 | 865[110]–933[127] | Triangulum Galaxy | L/Teff | |
LGGS J004429.36+412307.8 | 862[110] | Andromeda Galaxy | L/Teff | |
LGGS J013310.20+303314.4 | 861[110] | Triangulum Galaxy | L/Teff | |
LGGS J004404.60+412729.8 | 860[110] | Andromeda Galaxy | L/Teff | |
LGGS J003907.69+402859.5 | 860[110] | Andromeda Galaxy | L/Teff | |
LGGS J004219.64+412736.1 | 859[110] | Andromeda Galaxy | L/Teff | |
LGGS J003949.31+402049.1 | 859[110] | Andromeda Galaxy | L/Teff | |
LGGS J013310.16+302726.3 | 855[110] | Triangulum Galaxy | L/Teff | |
LGGS J004036.97+403412.4 | 855[110] | Andromeda Galaxy | L/Teff | |
LGGS J013343.68+304450.7 | 855[110] | Triangulum Galaxy | L/Teff | |
LGGS J013409.10+303351.8 | 854[110] | Triangulum Galaxy | L/Teff | |
LGGS J013407.11+303918.7 | 854[110] | Triangulum Galaxy | L/Teff | |
LGGS J004107.11+411635.6 | 854[110] | Andromeda Galaxy | L/Teff | |
LGGS J013400.01+304622.2 | 852[110] | Triangulum Galaxy | L/Teff | |
LGGS J013327.14+303917.4 | 851[110] | Andromeda Galaxy | L/Teff | |
LGGS J013339.79+304032.2 | 850[110] | Triangulum Galaxy | L/Teff | |
LGGS J004501.30+413922.5 | 850[110] | Andromeda Galaxy | L/Teff | |
LGGS J004450.87+412924.3 | 850[110] | Andromeda Galaxy | L/Teff | |
LGGS J004040.69+405908.1 | 850[110] | Andromeda Galaxy | L/Teff | |
LGGS J003942.92+402051.1 | 850[110] | Andromeda Galaxy | L/Teff | |
2MASS J01335092+3040481 | 850[110] | Triangulum Galaxy | L/Teff | |
LGGS J013315.19+305319.8 | 847[110] | Triangulum Galaxy | L/Teff | |
LGGS J013416.89+305158.3 | 845[110]–920[127] | Triangulum Galaxy | L/Teff | |
LGGS J004415.17+415640.6 | 845[110] | Andromeda Galaxy | L/Teff | |
LGGS J004424.94+412322.3 | 844[110] | Andromeda Galaxy | L/Teff | |
LGGS J013331.93+301952.9 | 838[110] | Triangulum Galaxy | L/Teff | |
LGGS J004406.16+414846.4 | 836[110] | Andromeda Galaxy | L/Teff | |
LGGS J013445.65+303235.4 | 835[110] | Triangulum Galaxy | L/Teff | |
LGGS J004109.39+404901.9 | 834[110] | Andromeda Galaxy | L/Teff | |
LGGS J004423.83+414928.6 | 833[110] | Andromeda Galaxy | L/Teff | |
LGGS J013242.31+302113.9 | 833[127] | Triangulum Galaxy | L/Teff | |
LGGS J004030.48+404051.1 | 833[110] | Andromeda Galaxy | L/Teff | |
LGGS J004118.29+404940.3 | 832[110] | Andromeda Galaxy | L/Teff | |
LGGS J013414.17+304701.9 | 831[110] | Triangulum Galaxy | L/Teff | |
LGGS J013328.89+303058.0 | 831[110] | Triangulum Galaxy | L/Teff | |
LGGS J004107.70+403702.3 | 831[110] | Andromeda Galaxy | L/Teff | |
LGGS J003925.67+404111.8 | 831[110] | Andromeda Galaxy | L/Teff | |
LGGS J004306.95+410038.2 | 826[110] | Andromeda Galaxy | L/Teff | |
LGGS J013408.81+304637.8 | 826[110] | Triangulum Galaxy | L/Teff | |
LGGS J013345.22+303138.2 | 826[110] | Triangulum Galaxy | L/Teff | |
LGGS J003950.65+402531.8 | 825[110] | Andromeda Galaxy | L/Teff | |
LGGS J013427.65+305642.4 | 825[127] | Triangulum Galaxy | L/Teff | |
LGGS J013500.04+303703.8 | 823[110] | Triangulum Galaxy | L/Teff | |
LGGS J004108.42+410655.3 | 822[110] | Andromeda Galaxy | L/Teff | |
LGGS J013340.77+302108.7 | 821[110]–820[127] | Triangulum Galaxy | L/Teff | |
LGGS J004458.57+412925.1 | 821[110] | Andromeda Galaxy | L/Teff | |
LGGS J013309.97+302727.5 | 973[110] | Triangulum Galaxy | L/Teff | |
LGGS J004124.81+411206.1 | 819[110] | Andromeda Galaxy | L/Teff | |
LGGS J013401.65+303128.7 | 819[110] | Triangulum Galaxy | L/Teff | |
LGGS J013455.65+304349.0 | 816[110] | Triangulum Galaxy | L/Teff | |
LGGS J013310.60+302301.8 | 816[110] | Triangulum Galaxy | L/Teff | |
LGGS J004544.71+414331.9 | 815[110] | Andromeda Galaxy | L/Teff | |
LGGS J004119.35+410836.4 | 813[110] | Andromeda Galaxy | L/Teff | |
LGGS J013436.65+304517.1 | 814[110]–812[127] | Triangulum Galaxy | L/Teff | |
LGGS J013301.79+303954.3 | 812[110] | Triangulum Galaxy | L/Teff | |
LGGS J013328.85+310041.7 | 810[110]–909[127] | Triangulum Galaxy | L/Teff | |
LGGS J013401.08+303432.2 | 809[110] | Triangulum Galaxy | L/Teff | |
LGGS J004036.45+403613.1 | 808[110] | Andromeda Galaxy | L/Teff | |
LGGS J004521.53+413758.6 | 807[110] | Andromeda Galaxy | L/Teff | |
LGGS J004432.38+415149.9 | 807[110] | Andromeda Galaxy | L/Teff | |
LGGS J013306.95+303506.1 | 807[127] | Triangulum Galaxy | L/Teff | Contradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG. |
LGGS J013242.26+302114.1 | 807[110] | Triangulum Galaxy | L/Teff | |
LGGS J013321.94+304112.0 | 806[110]–829[127] | Triangulum Galaxy | L/Teff | |
LGGS J013304.56+303043.2 | 804[110] | Triangulum Galaxy | L/Teff | |
LGGS J004331.73+414223.0 | 803[110] | Andromeda Galaxy | L/Teff | |
LGGS J004044.17+410729.0 | 803[110] | Andromeda Galaxy | L/Teff | |
LGGS J013352.83+305605.2 | 803[110] | Triangulum Galaxy | L/Teff | |
LGGS J013343.30+303318.9 | 873[110]–803[127] | Triangulum Galaxy | L/Teff | |
LGGS J013342.61+303534.7 | 800[110] | Triangulum Galaxy | L/Teff | |
LGGS J013326.90+310054.2 | 800[110]–909[127] | Triangulum Galaxy | L/Teff | |
LGGS J013300.94+303404.3 | 798[110] | Triangulum Galaxy | L/Teff | |
LGGS J013416.06+303730.0 | 798[110] | Triangulum Galaxy | L/Teff | |
LGGS J004503.83+413737.0 | 797[110] | Andromeda Galaxy | L/Teff | |
LGGS J004503.83+413737.0 | 797[110] | Andromeda Galaxy | L/Teff | |
LGGS J004438.83+415253.0 | 794[110] | Andromeda Galaxy | L/Teff | |
LGGS J004235.88+405442.2 | 794[110] | Andromeda Galaxy | L/Teff | |
LGGS J004335.28+410959.7 | 794[110] | Andromeda Galaxy | L/Teff | |
LGGS J013402.32+303828.4 | 793[110] | Triangulum Galaxy | L/Teff | |
LGGS J004125.55+405034.8 | 792[110] | Andromeda Galaxy | L/Teff | |
LGGS J013507.43+304132.6 | 791[110] | Triangulum Galaxy | L/Teff | |
LGGS J013353.25+303918.7 | 791[110] | Triangulum Galaxy | L/Teff | |
LGGS J004308.71+410604.5 | 790[110] | Andromeda Galaxy | L/Teff | |
LGGS J013417.17+304826.6 | 789[110] | Triangulum Galaxy | L/Teff | |
LGGS J013310.71+302714.9 | 789[110]–884[127] | Triangulum Galaxy | L/Teff | |
LGGS J013432.36+304159.0 | 788[110] | Triangulum Galaxy | L/Teff | |
LGGS J004356.23+414641.8 | 788[110] | Andromeda Galaxy | L/Teff | |
LGGS J013340.77+302108.7 | 788[110] | Triangulum Galaxy | L/Teff | |
LGGS J013346.61+304125.4 | 786[110] | Triangulum Galaxy | L/Teff | |
LGGS J004447.08+412801.7 | 785[110] | Andromeda Galaxy | L/Teff | |
LGGS J004255.95+404857.5 | 785[129] | Andromeda Galaxy | L/Teff | |
LGGS J013231.91+302329.1 | 783[110] | Triangulum Galaxy | L/Teff | |
LGGS J004110.32+410433.4 | 782[110] | Andromeda Galaxy | L/Teff | |
LGGS J004159.06+405718.7 | 780[110] | Andromeda Galaxy | L/Teff | |
LGGS J004241.10+413142.3 | 775[110] | Andromeda Galaxy | L/Teff | |
LGGS J013401.88+303858.3 | 776[127] | Triangulum Galaxy | L/Teff | |
LGGS J013445.12+305858.9 | 773[110] | Triangulum Galaxy | L/Teff | |
LGGS J004030.92+404329.3 | 773[110] | Andromeda Galaxy | L/Teff | |
LGGS J013359.57+303413.5 | 771[110] | Triangulum Galaxy | L/Teff | |
LGGS J004353.97+411255.6 | 771[110] | Andromeda Galaxy | L/Teff | |
LGGS J004029.03+403412.6 | 770[110] | Andromeda Galaxy | L/Teff | |
LGGS J004526.24+420047.5 | 767[110] | Andromeda Galaxy | L/Teff | |
LGGS J013348.44+302029.8 | 767[110] | Triangulum Galaxy | L/Teff | |
LGGS J004552.15+421003.5 | 767[110] | Andromeda Galaxy | L/Teff | |
LGGS J013320.75+303204.8 | 764[110] | Triangulum Galaxy | L/Teff | |
LGGS J013416.28+303353.5 | 763[110]–801[127] | Triangulum Galaxy | L/Teff | |
LGGS J013357.91+303338.9 | 763[110] | Triangulum Galaxy | L/Teff | |
LGGS J013253.14+303515.3 | 762[110] | Triangulum Galaxy | L/Teff | |
LGGS J004051.18+403053.4 | 762[110] | Andromeda Galaxy | L/Teff | |
LGGS J013402.57+303746.3 | 762[110] | Triangulum Galaxy | L/Teff | |
LGGS J013352.15+304006.4 | 762[110] | Triangulum Galaxy | L/Teff | |
LGGS J004427.07+415203.0 | 762[110] | Andromeda Galaxy | L/Teff | |
LGGS J004233.23+405917.0 | 762[110] | Andromeda Galaxy | L/Teff | |
LGGS J004156.96+405720.8 | 761[110] | Andromeda Galaxy | L/Teff | |
LGGS J004117.14+410843.7 | 761[110] | Andromeda Galaxy | L/Teff | |
LGGS J004124.80+411634.7 | 760, 1,205, 1,240[129] | Andromeda Galaxy | L/Teff | |
LGGS J004109.61+404920.4 | 761[110] | Andromeda Galaxy | L/Teff | |
LGGS J003930.09+402313.0 | 759[110] | Andromeda Galaxy | L/Teff | |
LGGS J013324.71+303423.7 | 758[110] | Triangulum Galaxy | L/Teff | |
LGGS J013317.40+303210.8 | 758[110] | Triangulum Galaxy | L/Teff | |
LGGS J013411.83+304631.0 | 756[110] | Triangulum Galaxy | L/Teff | |
LGGS J004417.75+420039.1 | 755[110] | Andromeda Galaxy | L/Teff | |
LGGS J004454.50+413007.8 | 755[110] | Andromeda Galaxy | L/Teff | |
LGGS J013348.77+304526.8 | 754[110] | Triangulum Galaxy | L/Teff | |
LGGS J004019.69+404912.2 | 754[110] | Andromeda Galaxy | L/Teff | |
LGGS J004340.32+411157.1 | 753[110] | Andromeda Galaxy | L/Teff | |
LGGS J013304.02+303215.2 | 753[110] | Triangulum Galaxy | L/Teff | |
LGGS J013409.16+303846.9 | 752[110] | Triangulum Galaxy | L/Teff | |
LGGS J013459.81+304156.9 | 751[110]–765[127] | Triangulum Galaxy | L/Teff | |
LGGS J013334.82+302029.1 | 751[110]–930[127] | Triangulum Galaxy | L/Teff | |
LGGS J013400.71+303422.3 | 750[110] | Triangulum Galaxy | L/Teff | |
LGGS J004224.65+412623.7 | 749[110] | Andromeda Galaxy | L/Teff | |
LGGS J013414.88+303401.2 | 749[110] | Triangulum Galaxy | L/Teff | |
LGGS J004343.33+414529.5 | 749[110] | Andromeda Galaxy | L/Teff | |
LGGS J004034.76+403648.9 | 749[110] | Andromeda Galaxy | L/Teff | |
LGGS J013353.53+303418.7 | 749[110] | Triangulum Galaxy | L/Teff | |
LGGS J004501.84+420259.2 | 747[110] | Andromeda Galaxy | L/Teff | |
LGGS J013409.70+303916.2 | 744[110] | Triangulum Galaxy | L/Teff | |
LGGS J013345.71+303609.8 | 744[110] | Triangulum Galaxy | L/Teff | |
LGGS J004342.75+411442.8 | 743[110] | Andromeda Galaxy | L/Teff | |
LGGS J013333.32+303147.2 | 741[110] | Triangulum Galaxy | L/Teff | |
LGGS J013338.97+303506.1 | 741[110] | Triangulum Galaxy | L/Teff | |
LGGS J013303.61+302841.5 | 741[110] | Triangulum Galaxy | L/Teff | |
LGGS J004201.12+412516.0 | 737[110] | Andromeda Galaxy | L/Teff | |
LGGS J004341.35+411213.8 | 734[110] | Andromeda Galaxy | L/Teff | |
LGGS J013438.76+304608.1 | 734[110] | Triangulum Galaxy | L/Teff | |
LGGS J013402.33+301749.2 | 734[110]–786[127] | Triangulum Galaxy | L/Teff | |
2MASS J01334180+3040207 | 732[110] | Triangulum Galaxy | L/Teff | |
LGGS J013354.32+301724.6 | 732[110]–854[127] | Triangulum Galaxy | L/Teff | |
LGGS J013334.23+303400.3 | 732[110] | Triangulum Galaxy | L/Teff | |
LGGS J013357.60+304113.3 | 730[110] | Triangulum Galaxy | L/Teff | |
LGGS J004614.57+421117.4 | 730[110] | Andromeda Galaxy | L/Teff | |
LGGS J004120.96+404125.3 | 730[110] | Andromeda Galaxy | L/Teff | |
LGGS J004228.46+405519.0 | 728[110] | Andromeda Galaxy | L/Teff | |
LGGS J004024.52+404444.8 | 728[110] | Andromeda Galaxy | L/Teff | |
LGGS J013349.75+304459.8 | 727[110] | Triangulum Galaxy | L/Teff | |
LGGS J013306.88+303004.6 | 727[110] | Triangulum Galaxy | L/Teff | |
LGGS J004358.00+412114.1 | 727[110] | Andromeda Galaxy | L/Teff | |
LGGS J004147.27+411537.8 | 727[110] | Andromeda Galaxy | L/Teff | |
LGGS J013407.23+304158.8 | 725[110]–833[127] | Triangulum Galaxy | L/Teff | |
LGGS J004519.82+415531.9 | 725[110] | Andromeda Galaxy | L/Teff | |
LGGS J004410.84+411538.8 | 725[110] | Andromeda Galaxy | L/Teff | |
LGGS J013407.38+305935.0 | 724[110] | Triangulum Galaxy | L/Teff | |
LGGS J004438.75+415553.6 | 724[110] | Andromeda Galaxy | L/Teff | |
LGGS J004324.16+411228.3 | 723[110] | Andromeda Galaxy | L/Teff | |
LGGS J004059.58+403815.6 | 723[110] | Andromeda Galaxy | L/Teff | |
LGGS J013327.40+304126.4 | 721[110] | Triangulum Galaxy | L/Teff | |
LGGS J013243.72+301912.5 | 721[110]–783[127] | Triangulum Galaxy | L/Teff | |
Gaia DR3 303379932695513216 | 720[110] | Triangulum Galaxy | L/Teff | |
LGGS J004558.92+414642.1 | 720[110] | Andromeda Galaxy | L/Teff | |
LGGS J004103.46+403633.2 | 717[110] | Andromeda Galaxy | L/Teff | |
LGGS J013324.89+301754.3 | 717[110] | Triangulum Galaxy | L/Teff | |
LGGS J004015.18+405947.7 | 716[110] | Andromeda Galaxy | L/Teff | |
LGGS J013414.53+303557.7 | 715[110] | Triangulum Galaxy | L/Teff | |
LGGS J013351.89+303853.5 | 715[110] | Triangulum Galaxy | L/Teff | |
LGGS J004458.82+413050.4 | 715[110] | Andromeda Galaxy | L/Teff | |
LGGS J013352.51+303942.2 | 715[110] | Triangulum Galaxy | L/Teff | |
LGGS J004124.91+411133.1 | 715[110] | Andromeda Galaxy | L/Teff | |
LGGS J004604.18+415135.4 | 713[110] | Andromeda Galaxy | L/Teff | |
LGGS J013305.17+303119.8 | 711[110] | Triangulum Galaxy | L/Teff | |
LGGS J004517.25+413948.2 | 711[110] | Andromeda Galaxy | L/Teff | |
LGGS J013349.86+303246.1 | 710[130]–795[127] | Triangulum Galaxy | L/Teff | A yellow supergiant. |
2MASS J01335929+3034435 | 709[110] | Triangulum Galaxy | L/Teff | |
LGGS J004230.32+405624.1 | 708[110] | Andromeda Galaxy | L/Teff | |
LGGS J004101.02+403506.1 | 708[110] | Andromeda Galaxy | L/Teff | |
LGGS J004119.21+411237.2 | 707[110] | Andromeda Galaxy | L/Teff | |
LGGS J004606.25+415018.9 | 707[110] | Andromeda Galaxy | L/Teff | |
LGGS J013442.05+304540.2 | 707[110]–707[127] | Triangulum Galaxy | L/Teff | |
LGGS J013431.84+302721.5 | 707[110]–717[127] | Triangulum Galaxy | L/Teff | |
LGGS J013304.68+304456.0 | 707[110]–739[127] | Triangulum Galaxy | L/Teff | |
LGGS J004432.27+415158.4 | 705[110] | Andromeda Galaxy | L/Teff | |
2MASS J01335131+3039149 | 704[110] | Triangulum Galaxy | L/Teff | |
LGGS J013339.46+302113.0 | 703[110]–748[127] | Triangulum Galaxy | L/Teff | |
LGGS J003935.36+401946.4 | 703[110] | Andromeda Galaxy | L/Teff | |
LGGS J013343.03+303433.5 | 702[110] | Triangulum Galaxy | L/Teff | |
LGGS J004505.87+413452.3 | 702[110] | Andromeda Galaxy | L/Teff | |
LGGS J013414.18+305248.0 | 701[110]–731[127] | Triangulum Galaxy | L/Teff | |
LGGS J013402.53+304107.7 | 701[110]–749[127] | Triangulum Galaxy | L/Teff | |
LGGS J013340.80+304248.5 | 701[110]–814[127] | Triangulum Galaxy | L/Teff | |
LGGS J013312.59+303252.5 | 701[110] | Triangulum Galaxy | L/Teff | |
The following well-known stars are listed for the purpose of comparison. | ||||
Var 83 | 150[131] | Triangulum Galaxy | L/Teff | A luminous blue variable and one of the most luminous stars in M33. |
Other galaxies (within the Local Group)
Star name | Solar radii (Sun = 1) | Galaxy | Method[a] | Notes |
---|---|---|---|---|
WOH G64 (For comparison) | 1,540[9][10][11][12][13] ± 77[9] | Large Magellanic Cloud | L/Teff | Located in the Large Magellanic Cloud. The largest known star with a well-defined radius.[9][10][14][11] |
Sextans A 10 | 995±130[132] | Sextans A | L/Teff | |
WLM 02 | 883+284 −167[133] | WLM | L/Teff | |
Sextans A 5 | 870±145[132] | Sextans A | L/Teff | |
Leo A 7 | 785[134] | Leo A | L/Teff | |
Sextans A 7 | 710±100[132] | Sextans A | L/Teff |
Outside the Local Group (inside the Virgo supercluster)
Star name | Solar radii (Sun = 1) | Galaxy | Group | Method[a] | Notes |
---|---|---|---|---|---|
NGC 1313-310 | 1,668+168 −190[135] | NGC 1313 | L/Teff | Luminosity has not yet been constrained well enough yet to confirm its extreme properties, and further observations are needed to show that it is a single, uncontaminated star. Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] | |
WOH G64 (For comparison) | 1,540[9][10][11][12][13] ± 77[9] | Large Magellanic Cloud | L/Teff | Located in the Large Magellanic Cloud. The largest known star with a well-defined radius.[9][10][14][11] | |
NGC 300-125 | 1,504+176 −157[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-154 | 1,503+79 −75[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 7793-34 | 1,392+157 −160[135] | NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-40 | 1,286 +116 −106[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 2403 V14 | 1,260[136] | NGC 2403 | M81 Group | L/Teff | A F-type luminous blue variable. |
NGC 300-154 | 1,200 +123 −111[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-114 | 1,181 +123 −111[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-199 | 1,181 +120 −109[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-153 | 1,173 +120 −109[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-153 | 1,167 +119 −107[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 253-2006 | 1,167 +75 −70[135] | Sculptor Galaxy | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
SPIRITS 14atl | 1,134–1,477[137] | Messier 83 | Centaurus A/M83 Group | L/Teff | |
NGC 300-59 | 1,133 +146 −129[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 7793-86 | 1,127 +94 −109[135] | NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-263 | 1,108 +113 −102[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-447 | 1,101 +58 −56[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
SPIRITS 15ahp | 1,098[137] | NGC 2403 | M81 Group | L/Teff | |
NGC 300-240 | 1,088 +112 −101[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 7793-86 | 1,078 +69 −64[135] | NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-173 | 1,063 +84 −77[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-340 | 1,036 +105 −95[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-346 | 1,023 +139 −128[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-533 | 1,004 +66 −62[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-351 | 992 +115 −102[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-524 | 987 +77 −72[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-135 | 964 +99 −89[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-93 | 955 +49 −47[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 7793-539 | 948[135] | NGC 7793 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-87 | 948 +109 −98[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-146 | 921 +49 −46[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-273 | 921 +94 −85[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-186 | 915 +72 −65[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-200 | 905 +59 −55[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-152 | 895 +58 −54[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-413 | 861 +66 −61[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-174 | 856 +65 −61[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
M81 10584-25-2 | 851[136] | Messier 81 | M81 Group | L/Teff | |
M81 10584-13-3 | 843[136] | Messier 81 | M81 Group | L/Teff | |
NGC 55-75 | 836 +81 −111[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-545 | 824 +104 −93[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-2912 | 821 +54 −51[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-216 | 801 +102 −89[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-1471 | 798 +52 −48[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-499 | 796 +89 −108[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-379 | 744 +56 −52[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-838 | 744 +57 −53[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-149 | 738 +47 −55[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-194 | 730 +46 −44[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
[GKE2015] 7 | 729[138] | NGC 300 | NGC 55 Group | L/Teff | |
NGC 55-270 | 728 +38 −36[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-1047 | 724 +65 −59[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-3231 | 719 +56 −51[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 247-2966 | 719 +56 −52[135] | NGC 247 | Sculptor Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 55-245 | 717 +55 −50[135] | NGC 55 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-1068 | 716 +64 −58[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
NGC 300-1081 | 712 +54 −51[135] | NGC 300 | NGC 55 Group | L/Teff | Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[135] |
The following well-known stars are listed for the purpose of comparison. | |||||
NGC 2363-V1 | 194–356[139] | NGC 2366 | M81 Group | L/Teff |
Outside the Virgo supercluster
Note that this list does not include the candidate JWST dark stars, with estimated radii of up to 61 astronomical units (13,000 R☉)[140] or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).[141]
Star name | Solar radii (Sun = 1) | Galaxy | Group | Method[a] | Notes |
---|---|---|---|---|---|
Quyllur | 965[142] | L/Teff | Likely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope. | ||
The following well-known stars are listed for the purpose of comparison. | |||||
Godzilla | 430–2,365[143] | Sunburst galaxy | L/Teff | The most luminous known star.[144] | |
Mothra | 271[145] | LS1 | L/Teff | A binary star at cosmological distances. |
Transient events
During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.
Star or transient event name | Solar radii (Sun = 1) | Year | Galaxy | Group | Method | Notes |
---|---|---|---|---|---|---|
AT 2017jfs | 33,000[146] | 2017 | NGC 4470 | L/Teff | ||
SNhunt151 | 16,700[147] | 2014 | UGC 3165 | LDC 331 | L/Teff | |
SN 2015bh | 16,400±2,600[148] | 2015 | NGC 2770 | LDC 616 | L/Teff | |
AT 2018hso | 10,350[149] | 2018 | NGC 3729 | M109 Group | L/Teff | |
AT 2023clx | 6,800[150] | 2023 | NGC 3799 | nest 101314 | L/Teff | |
M51 OT2019-1 | 5,500[151] | 2019 | Whirlpool Galaxy | M51 Group | L/Teff | |
η Carinae | 4,319 – 6,032[94] | 1845 | Milky Way | Local Group | L/Teff | During the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0.[152] |
AT 2010dn | 4,130[153] | 2010 | NGC 3180 | LDC 743 | L/Teff | |
SN 2011fh | 3,980[154] | 2011 | NGC 4806 | Abell 3528 | L/Teff | |
AT 2014ej | 3,600[155] | 2014 | NGC 7552 | Grus Quartet | L/Teff | |
V838 Monocerotis | 3,190[83] | 2002 | Milky Way | Local Group | L/Teff | |
SN2008S | 3,020[153] | 2008 | NGC 6946 | NGC 6946 Group | L/Teff | |
SNhunt120 | 2,900[156][155] | 2012 | NGC 5775 | Virgo Cluster | L/Teff | |
AT 2017be | 2,000[157] | 2017 | NGC 2537 | L/Teff | ||
WOH G64 (For comparison) | 1,540[9][10][11][12][13] ± 77[9] | Large Magellanic Cloud | L/Teff | Located in the Large Magellanic Cloud. The largest known star with a well-defined radius.[9][10][14][11] | ||
PHL 293B star | 1,348 – 1,463[158] | 2002 | PHL 293B | L/Teff | ||
SNhunt248 | ~850[159] | 2014 | NGC 5806 | NGC 5846 Group | L/Teff | |
R71 | 500[160] | 2012 | Large Magellanic Cloud | Local Group | L/Teff | |
SN 2000ch | 500[161] | 2000 | NGC 3432 | LDC 743 | L/Teff | |
Godzilla | 430 – 2,365[143] | 2015 | Sunburst galaxy | ? | ||
AT 2016blu | ~330[162] | 2012 – 2022 | NGC 4559 | Coma I Group | L/Teff | 19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009.[162] |
SN Progenitors
Star or supernova name | Solar radii (Sun = 1) | Year | Galaxy | Group | Method | Notes |
---|---|---|---|---|---|---|
SN 2020faa | 1,000[163] | 2020 | 2MASS J14470904+7244157 | L/Teff | ||
SN 2023ixf | 912+227 −222[164]–1,060±30[165] | 2023 | Pinwheel galaxy | M101 Group | L/Teff | |
SN 2020jfo | 700±10[166] | 2020 | Messier 61 | Virgo Cluster | L/Teff | |
SN 2023axu | 417±28[167] | 2023 | NGC 2283 | L/Teff | ||
SN 2021agco | 78.37+25.59 −19.94[168] | 2021 | UGC 3855 | LDC 506 | L/Teff | Nearest ultrastripped supernova known. |
Largest stars by apparent size
The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is the milliarcsecond (mas), equivalent to 10×10−3 arcseconds. Stars with angular diameters larger than 13 milliarcseconds are included.
Name | Angular diameter (mas) | Angular diameter type[g] | Distance (light-years) | Spectral type[169] | Notes |
---|---|---|---|---|---|
Sun | 2,000,000 | 0.000016 | G2V | The largest star by angular diameter. | |
R Doradus | 51.18±1.24[87] | LD | 179±10[87] | M8III:e | The largest star by angular diameter apart from the Sun. |
Betelgeuse (α Orionis) | 42.28±0.43[74] | LD | 408–540+98 | M1-M2Ia-Iab | |
Antares (α Scorpii A) | 37.31±0.09[170] | LD | 553.5±93.9[171] | M1.5Iab | |
Mira (ο Ceti) | 28.9±0.3 – 34.9±0.4[172] | Ross | 299±33[171] | M5-M9IIIe | The angular diameter vary during Mira's pulsations. |
Gacrux (γ Crucis) | 24.7[97] | ? | 88.6±0.4[171] | M3.5III | |
Rasalgethi (α Herculis) | 23.95±5.03[88] | Est | 359±52[171] | M5Ib-II | |
R Hydrae | 23.7±1[23] | ? | 482±33[23] | M6-9e | |
Arcturus (α Boötis) | 21.06±0.17[173] | LD | 36.8[173] | K1.5IIIFe-0.5 | |
π1 Gruis | 21[174] | ? | 535[174] | S5,7 | |
Aldebaran (α Tauri) | 20.58[175]–21.1[176] | LD | 65.3±1[177] | K5+III | |
GY Aquilae | 20.46[23] | ? | 1108±98[23] | M8 | |
R Lyrae | 18.016±0.224[176] | LD | 310+10 −7[178] | M4.5III | |
Scheat (β Pegasi) | 16.75±0.24[179] | Ross | 196±2[171] | M2.5II-III | |
Gorgonea Tertia (ρ Persei) | 16.555±0.166[176] | LD | 308±7[171] | M4+IIIa | |
SW Virginis | 16.11±0.13–16.8±0.34[180] | UD | 527±46.9[181] | M7III: | |
R Aquarii | 15.61±0.8 – 16.59±1.03[180] | LD | 711+39 −36[182] | M6.5–M8.5e | |
g Herculis | 15.2±0.5 – 19.09±0.19[180] | LD | 385±10[178] | M6-III | |
RS Cancri | 15.1±0.5 – 17.2±0.4[176] | LD | 490±40[183] | M6S | |
Tejat (μ Geminorum) | 15.118±0.151[176] | LD | 230±10[171] | M3IIIab | |
R Leonis Minoris | 14.4±0.87[180] | LD | 942+33 −47[178] | M6.5-9e | |
S Cephei | 14.29±2.28[180] | LD | 1591+49 −46[178] | C7,3e | |
T Cassiopeiae | 14.22±0.73[180] | LD | 893+49 −46[178] | M7-9e | |
μ Cephei (Herschel's Garnet Star) | 14.11 ± 0.6[184] | 3060+460 −130[185] | M2Ia | ||
Mirach (β Andromedae) | 13.749±0.137[176] | LD | 199±9[186] | M0+IIIa | |
Menkar (α Ceti) | 13.238±0.056[176] | LD | 249±8[171] | M1.5IIIa | Another measurents include 12.2±0.04 mas.[187] |
V Cygni | 13.1±0.208 – 14.84±2.37[180] | LD | 1747+163 −137[178] | C7,4eJ |
See also
- Constellation
- Lists of stars
- List of most massive stars
- List of most luminous stars
- List of hottest stars
- List of coolest stars
- List of smallest known stars
- List of most massive black holes
- List of largest nebulae
- List of largest galaxies
- List of largest cosmic structures
- List of largest exoplanets
- List of star extremes
- Star
Notes
- ^ a b c d e f Methods for calculating the radius:
- AD: radius calculated from angular diameter and distance
- L/Teff: radius calculated from bolometric luminosity and effective temperature
- SEIS: radius obtained from seismic data
- OD: radius obtained from optical depth
- ^ a b c d e f At the J2000 epoch
- ^ [9][10][11][12][13]
- ^ Using an angular diameter of 7.8±0.64 milliarcseconds[27] and a distance of 1610+130
−110 parsecs.[28] - ^ Using an angular diameter of 14.11±0.6 milliarcseconds and a distance of 940+140
−40 parsecs. - ^ Luminosities are calculated using the apparent bolometric magnitude and distances in the following equation:
100.4 • (4.74−(mbol+5−5 • log(dist))) - ^ Legend:
UD=Uniform disk diameter
LD=Limb-darkened diameter
Ross=Rosseland diameter
Est = Estimated using distance and physical radius
References
- ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].
- ^ Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal. 659 (2): 1536–1540. arXiv:astro-ph/0612161. Bibcode:2007ApJ...659.1536R. doi:10.1086/512672. S2CID 8913778.
- ^ Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society. 474 (2): 2757–2773. arXiv:1705.09301. doi:10.1093/mnras/stx2919.
- ^ Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society. 521: 463–473. arXiv:2208.00008. doi:10.1093/mnras/stad572.
- ^ Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics. 652: L7. arXiv:2105.13373. Bibcode:2021A&A...652L...7H. doi:10.1051/0004-6361/202141376. S2CID 235247984.
- ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X. S2CID 5150686.
- ^ Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. S2CID 250739134.
- ^ a b c d e f "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 25 September 2021.
- ^ a b c d e f g h i j k l m n o p q r Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
- ^ a b c d e f g h i j k l m n o p q r s de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv:2209.11239. Bibcode:2023A&A...669A..86D. doi:10.1051/0004-6361/202243394. S2CID 252519285.
- ^ a b c d e f g h i j k l Levesque, E. M. (June 2010). The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103. arXiv:0911.4720. Bibcode:2010ASPC..425..103L. S2CID 8921166.
- ^ a b c d e f g h i j k Beasor, Emma R.; Smith, Nathan (1 May 2022). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933 (1): 41. arXiv:2205.02207. Bibcode:2022ApJ...933...41B. doi:10.3847/1538-4357/ac6dcf. S2CID 248512934.
- ^ a b c d e f Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. S2CID 11352637.
- ^ a b c d e f Jones, Olivia; Woods, Paul; Kemper, Franziska; Kraemer, Elena; Sloan, G.; Srinivasan, Sivakrishnan; Oliveira, Joana; van Loon, Jacco; Boyer, Martha; Sargent, Benjamin; Mc Donald, I.; Meixner, Margaret; Zijlstra, A.; Ruffel, Paul; Lagadec, Eric; Pauly, Tyler (7 May 2017). "The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III". Monthly Notices of the Royal Astronomical Society. 470 (3): 3250–3282. arXiv:1705.02709. doi:10.1093/mnras/stx1101. Retrieved 23 June 2022.
- ^ a b c d e f g h Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X. S2CID 15109583.
- ^ El-Badry, Kareem (22 April 2024). "On the formation of a 33 solar-mass black hole in a low-metallicity binary". The Open Journal of Astrophysics. 7: 38. arXiv:2404.13047. Bibcode:2024OJAp....7E..38E. doi:10.33232/001c.117652.
- ^ a b c d e f g h i j k l m n o p q r s t u v Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
- ^ a b Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. S2CID 54044968.
- ^ a b Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: 25. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. ISSN 0004-6361. S2CID 263787323.
- ^ Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv:1811.05998. Bibcode:2019AJ....157...57G. doi:10.3847/1538-3881/aaf5cb. S2CID 119044678.
- ^ Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS. 6 (1): 12. Bibcode:2022RNAAS...6...12N. doi:10.3847/2515-5172/ac4991. ISSN 2515-5172.