マンハッタン距離

マンハッタン距離の例:どの色のコースを辿っても同じ距離が決まっている

マンハッタン距離(マンハッタンきょり、Manhattan distance)またはL1-距離は、幾何学における距離概念の一つ。各座標の差(の絶対値)の総和を2点間の距離とする。

ユークリッド幾何学における通常の距離ユークリッド距離)に代わり、この距離概念を用いた幾何学はタクシー幾何学 (taxicab geometry) と呼ばれる。19世紀ヘルマン・ミンコフスキーによって考案された。

定義

[編集]

より形式的には、2点間の距離を直交する座標軸に沿って測定することで一般の 次元空間においてマンハッタン距離 が定義される。

ただし、, とおいた。例えば、平面上において座標 に置かれた点 と、座標 に置かれた点 間のマンハッタン距離は

となる。

[編集]

マンハッタン距離は、都市ブロック距離(city block distance, 市街地距離)としても知られている。マンハッタン距離の名は、マンハッタンのような正方形のブロックに区分された都市で、自動車が運転される距離に由来する。ある角から東に 3 ブロック、北に 6 ブロックの位置にある角まで移動するには、いかなる経路を辿っても最低 9 ブロックを通過せねばならない。

チェスでは、ルークにとってのマス間の距離はマンハッタン距離によって測られる(キングクイーンビショップチェビシェフ距離を用いる)。

外部リンク

[編集]