Continuidade uniforme – Wikipédia, a enciclopédia livre

Gráfico de uma função uniformemente contínua

Continuidade uniforme é um importante conceito matemático com numerosas aplicações sobretudo na análise real e na análise funcional.

Grosseiramente falando, uma função é dita contínua se suficientemente pequenas variações no domínio resultem em pequenas variações na imagem. Uma função é dita uniformemente contínua se "suficientemente pequeno" for independente do ponto inicial. Isto quer dizer que a partir de uma pequena variação da imagem podemos encontrar uma única variação do domínio que sirva para todos os pontos.

O conceito de continuidade uniforme é normalmente definido para funções entre dois espaços métricos, mas este conceito é muitas vezes generalizado para espaços vectoriais topológicos.

A continuidade uniforme é um conceito mais forte que o de continuidade e mais fraco que o de Lipschitz-continuidade (quando este se aplica).

Definição nos Números Reais

[editar | editar código-fonte]

No livro An Elementary Course in Analytic Geometry, de 1808, John Henry Tanner e Joseph Allen definem função contínua real com o que, hoje, é a definição de função uniformemente contínua.[carece de fontes?] Segundo esta obra, uma função contínua seria uma função que, quando a variável independente passa por todos os valores reais entre e , o valor de nunca se torna infinito e cobre todos valores entre e .[1] Esta definição é falsa.

Uma forma mais precisa desta definição é dizer que, para uma função real, definida para valores entre e , dados quaisquer valores e entre e , os valores de e devem ser finitos e deve ser possível achar para cada valor um valor [Nota 1] tal que sempre que , tem-se que .[Nota 2] Em outras palavras, sendo uma função real definida em , diremos que é uniformemente contínua quando dado , existe tal que

Definição em Espaços Métricos

[editar | editar código-fonte]

Para a função definida do espaço métrico para o espaço métrico , é dita uniformemente contínua se dado existe um tal que:

Ou seja, juntando tudo em uma única sentença matemática:

A definição mais fraca de uma função contínua em todos os pontos se escreve assim:

Observa-se que para uma função ser contínua em todos os pontos, basta ser possível escolher um para cada , enquanto que a continuidade uniforme exige um global, para todo .

Para dizer que uma função real não é uniformemente contínua, basta mostrar que se dado , seja qual for , podemos encontrar e no domínio de tal que

mas .

As propriedades e exemplos são baseados no livro Curso de Análise volume 1, de Elon Lages Lima.

  1. Se uma função real definida em é lipschitziana, então é uniformemente contínua. Sendo lipschitziana com constante de lipschitz , então para todo e em tem-se . Dado , basta tomar e então
  2. Seja função real definida em e uniformemente contínua. Se é uma sequência de Cauchy em , então é uma sequência de Cauchy. Como é uniformemente contínua, dado , existe tal que Sendo de Cauchy, dado esse , existe tal que para todo tem-se Como segue que para todo temos Logo é de Cauchy.
  3. Se é compacto, então toda função contínua definida em é uniformemente contínua. Suponha por contradição que é uma função definida em e não é uniformemente contínua. Então existe , tal que para cada , podemos encontrar e tais que mas Como é compacto, uma subsequência converge para Assim temos Como é contínua, segue que o que contradiz Logo é uniformemente contínua.
  1. A função não é uniformemente contínua. Dado , seja escolhido. Tome um número positivo tal que e . Então para temos , mas .
  2. A função , com , é uniformemente contínua. Dado , escolha . Então qualquer que seja temos, .
  3. A função é uniformemente contínua se for limitado. De fato, se para todo , dados quaisquer temos Logo f é lipschitziana e pela propriedade 1 é uniformemente contínua.
  4. A função não é uniformemente contínua. De fato, sendo e temos , mas
  5. A função definida em é contínua. Como é compacto, pela propriedade 3, é uniformemente contínua.

Notas e referências

Notas

  1. No texto de Tanner e Allen, em vez de δ, é utilizada a letra η.
  2. O texto de Tanner e Allen omite os símbolos de valor absoluto.

Referências

  1. John Henry Tanner e Joseph Allen, An Elementary Course in Analytic Geometry (1808), Part I, Chapter I, Introduction, Algebraic and Trigonometric Conceptions, 7. Continuous e discontinuous functions [google books]

[1]

  1. Lima, Elon Lages, Análise Real , vol. 1, 8ª. edição, Coleção Matemática Universitária, IMPA, 2004