Многозначная функция — Википедия

Функция от элемента «3» принимает два значения

Многозна́чная фу́нкция — обобщение понятия функции, допускающее наличие нескольких значений функции для одного аргумента[1].

Определение

[править | править код]

Функция , которая каждому элементу множества ставит в соответствие некоторое подмножество множества называется многозначной функцией[2], если хотя бы для одного значение содержит более одного элемента

Обычные (однозначные) функции можно рассматривать как частный случай многозначных, у которых значение состоит ровно из одного элемента.

Простейший пример — двузначная функция квадратного корня из положительного числа, у неё два значения, различающиеся знаком. Например, квадратный корень из 16 имеет два значения — и

Другой пример — обратные тригонометрические функции (например, арксинус) — поскольку значения прямых тригонометрических функций повторяются с периодом или то значения обратных функций многозначны («бесконечнозначны»), все они имеют вид или где  — произвольное целое число.

Многозначные функции неудобно использовать в формулах, поэтому из их значений нередко выделяют одно, которое называют главным. Для квадратного корня это неотрицательное значение (то есть, арифметический квадратный корень), для арксинуса — значение, попадающее в интервал и т. д.

Первообразную функцию (неопределённый интеграл) также можно рассматривать как бесконечнозначную функцию, поскольку она определена с точностью до константы интегрирования.

В комплексном анализе и алгебре

[править | править код]

Характерный пример многозначных функций — некоторые аналитические функции в комплексном анализе. Неоднозначность возникает при аналитическом продолжении по разным путям. Также часто многозначные функции получаются в результате взятия обратных функций.

Например, корень n-й степени из любого ненулевого комплексного числа принимает ровно значений. У комплексного логарифма число значений бесконечно, одно из них объявлено главным.

В комплексном анализе понятие многозначной функции тесно связано с понятием римановой поверхности — поверхности в многомерном комплексном пространстве, на которой данная функция становится однозначной.

Примечание

[править | править код]
  1. Г. Корн, Т. Корн. Справочник по математике. Для научных работников и инженеров. М., 1973 г. Глава 4. Функции и пределы, дифференциальное и интегральное исчисление. 4.2. Функции. 4.2-2. Функции со специальными свойствами. (а), стр.99. Дата обращения: 26 января 2012. Архивировано 19 января 2015 года.
  2. Кудрявцев Л. Д. Многозначная функция // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 720.

Литература

[править | править код]