Цепь Маркова — Википедия
Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, где вероятность наступления каждого события зависит только от состояния, достигнутого в предыдущем событии[1]. Характеризуется тем свойством, что, говоря нестрого, при текущем настоящем состоянии системы, её будущее состояние не зависит от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.[2]
Цепь Маркова с дискретным временем
[править | править код]Определение
[править | править код]Последовательность дискретных случайных величин называется простой цепью Маркова (с дискретным временем), если
- .
Таким образом, в простейшем случае условное распределение последующего состояния цепи Маркова зависит только от текущего состояния и не зависит от всех предыдущих состояний (в отличие от цепей Маркова высших порядков).
Область значений случайных величин называется простра́нством состоя́ний цепи, а номер — номером шага.
Переходная матрица и однородные цепи
[править | править код]Матрица , где
называется ма́трицей перехо́дных вероя́тностей на -м шаге, а вектор , где
— нача́льным распределе́нием цепи Маркова.
Очевидно, матрица переходных вероятностей является стохастической справа, то есть
- .
Цепь Маркова называется одноро́дной, если матрица переходных вероятностей не зависит от номера шага, то есть
- .
В противном случае цепь Маркова называется неоднородной. В дальнейшем будем предполагать, что имеем дело с однородными цепями Маркова.
Конечномерные распределения и матрица перехода за n шагов
[править | править код]Из свойств условной вероятности и определения однородной цепи Маркова получаем:
- ,
откуда вытекает специальный случай уравнения Колмогорова — Чепмена:
- ,
то есть матрица переходных вероятностей за шагов однородной цепи Маркова есть -я степень матрицы переходных вероятностей за 1 шаг. Наконец,
- .
Типы состояний
[править | править код]- Возвратное состояние.
- Возвратная цепь Маркова.
- Достижимое состояние.
- Неразложимая цепь Маркова.
- Периодическое состояние.
- Периодическая цепь Маркова.
- Поглощающее состояние. Состояние называется поглощающим, если .
- Эргодическое состояние.
Примеры
[править | править код]Цепь Маркова с непрерывным временем
[править | править код]Определение
[править | править код]Семейство дискретных случайных величин называется цепью Маркова (с непрерывным временем), если
- .
Цепь Маркова с непрерывным временем называется однородной, если
- .
Матрица переходных функций и уравнение Колмогорова — Чепмена
[править | править код]Аналогично случаю дискретного времени, конечномерные распределения однородной цепи Маркова с непрерывным временем полностью определены начальным распределением
и ма́трицей перехо́дных фу́нкций (переходных вероятностей)
- .
Матрица переходных вероятностей удовлетворяет уравнению Колмогорова — Чепмена: или
Матрица интенсивностей и дифференциальные уравнения Колмогорова
[править | править код]По определению матрица интенсивностей , или, что эквивалентно,
- .
Из уравнения Колмогорова — Чепмена следуют два уравнения:
Для обоих уравнений начальным условием выбирается . Соответствующее решение
Свойства матриц P и Q
[править | править код]Для любого матрица обладает следующими свойствами:
- Матричные элементы неотрицательны: (неотрицательность вероятностей).
- Сумма элементов в каждой строке равна 1: (полная вероятность), то есть матрица является стохастической справа (или по строкам).
- Все собственные числа матрицы не превосходят 1 по абсолютной величине: . Если , то .
- Собственному числу матрицы соответствует как минимум один неотрицательный левый собственный вектор-строка (равновесие): .
- Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.
Матрица обладает следующими свойствами:
- Внедиагональные матричные элементы неотрицательны: .
- Диагональные матричные элементы неположительны: .
- Сумма элементов в каждой строке равна 0:
- Действительная часть всех собственных чисел матрицы неположительна: . Если , то
- Собственному числу матрицы соответствует как минимум один неотрицательный левый собственный вектор-строка (равновесие):
- Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.
Граф переходов, связность и эргодические цепи Маркова
[править | править код]Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко — граф переходов) по следующим правилам:
- Множество вершин графа совпадает со множеством состояний цепи.
- Вершины соединяются ориентированным ребром , если (то есть интенсивность потока из -го состояния в -е положительна).
Топологические свойства графа переходов связаны со спектральными свойствами матрицы . В частности, для конечных цепей Маркова верны следующие теоремы:
- Следующие три свойства А, Б, В конечной цепи Маркова эквивалентны (обладающие ими цепи иногда называют слабо эргодическими):
- А. Для любых двух различных вершин графа переходов найдется такая вершина графа («общий сток»), что существуют ориентированные пути от вершины к вершине и от вершины к вершине . Замечание: возможен случай или ; в этом случае тривиальный (пустой) путь от к или от к также считается ориентированным путём.
- Б. Нулевое собственное число матрицы невырождено.
- В. При матрица стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
- Следующие пять свойств А, Б, В, Г, Д конечной цепи Маркова эквивалентны (обладающие ими цепи называют эргодическими):
- А. Граф переходов цепи ориентированно связен.
- Б. Нулевое собственное число матрицы невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).
- В. Для некоторого матрица строго положительна (то есть для всех ).
- Г. Для всех матрица строго положительна.
- Д. При матрица стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
Примеры
[править | править код]Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. В случае (a) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — , в случае (b) отличны от нуля только , а в случае (c) — . Остальные элементы определяются свойствами матрицы (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интенсивностей имеют вид:
Основное кинетическое уравнение
[править | править код]Основное кинетическое уравнение описывает эволюцию распределения вероятностей в цепи Маркова с непрерывным временем. «Основное уравнение» здесь — не эпитет, а перевод термина англ. Master equation. Для вектора-строки распределения вероятностей основное кинетическое уравнение имеет вид:
и совпадает, по существу, с прямым уравнением Колмогорова. В физической литературе чаще используют векторы-столбцы вероятностей и записывают основное кинетическое уравнение в виде, который явно использует закон сохранения полной вероятности:
где
Если для основного кинетического уравнения существует положительное равновесие , то его можно записать в форме
Функции Ляпунова для основного кинетического уравнения
[править | править код]Для основного кинетического уравнения существует богатое семейство выпуклых функций Ляпунова — монотонно меняющихся со временем функций распределения вероятностей. Пусть — выпуклая функция одного переменного. Для любого положительного распределения вероятностей () определим функцию Моримото :
- .
Производная по времени, если удовлетворяет основному кинетическому уравнению, есть
- .
Последнее неравенство справедливо из-за выпуклости .
Примеры функций Моримото
[править | править код]- , ;
- эта функция — расстояние от текущего распределения вероятностей до равновесного в -норме. Сдвиг по времени является сжатием пространства вероятностных распределений в этой норме. (О свойствах сжатий см. статью Теорема Банаха о неподвижной точке.)
- , ;
- эта функция — (минус) энтропия Кульбака (см. Расстояние Кульбака — Лейблера). В физике она соответствует свободной энергии, деленной на (где — постоянная Больцмана, — абсолютная температура):
- если (распределение Больцмана), то
- .
- , ;
- эта функция — аналог свободной энергии для энтропии Бурга, широко используемой в обработке сигналов:
- , ;
- это квадратичное приближение для (минус) энтропии Кульбака вблизи точки равновесия. С точностью до постоянного во времени слагаемого эта функция совпадает с (минус) энтропией Фишера, которую даёт следующий выбор,
- , ;
- это (минус) энтропия Фишера.
- , ;
- это один из аналогов свободной энергии для энтропии Тсаллиса[англ.].
- служит основой для статистической физики неэкстенсивных величин. При она стремится к классической энтропии Больцмана — Гиббса — Шеннона, а соответствующая функция Моримото — к (минус) энтропии Кульбака.
Практическое применение
[править | править код]Этот раздел требует существенной доработки. |
Одной из первых научных дисциплин, в которой цепи Маркова нашли практическое применение, стала лингвистика (в частности текстология). Сам Марков для иллюстрации своих результатов исследовал зависимость в чередовании гласных и согласных в первых главах «Евгения Онегина» и «Детских годов Багрова-внука»[3].
Примечания
[править | править код]- ↑ "Markov chain | Definition of Markov chain in US English by Oxford Dictionaries" (англ.). Oxford Dictionaries | English.. Lexico Dictionaries | English (14 декабря 2017). Дата обращения: 1 апреля 2020. Архивировано из оригинала 25 февраля 2021 года.
- ↑ Gagniuc, Paul A. Markov Chains: From Theory to Implementation and Experimentation (англ.). — USA, NJ: John Wiley & Sons, 2017. — P. 2—8. — ISBN 978-1-119-38755-8.
- ↑ Майстров, Л. Е. Развитие понятия вероятности. — Наука, 1980. — С. 188. — 269 с.
Литература
[править | править код]- Кельберт М. Я., Сухов Ю. М. Вероятность и статистика в примерах и задачах. Т. ІІ: Марковские цепи как отправная точка теории случайных процессов и их приложения. — М.: МЦНМО, 2010. — 295 с. — ISBN 978-5-94057-252-7.
- Марков А. А., Распространение закона больших чисел на величины, зависящие друг от друга. — Известия физико-математического общества при Казанском университете. — 2-я серия. — Том 15. (1906) — С. 135—156.
- Маркова цепь / А. В. Прохоров // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Kemeny J. G., Snell J. L., Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960
- Перевод: Кемени Дж. Дж., Снелл Дж. Л. Конечные цепи Маркова. — М.: Наука. 1970. — 272 с.
- Чжун Кай-лай Однородные цепи Маркова. Перев. с англ. — М.: Мир, 1964. — 425 с.
- Нуммелин Э., Общие неприводимые цепи Маркова и неотрицательные операторы. — М.: Мир, 1989. — 207 с.
- Morimoto T., Markov processes and the H-theorem. — J. Phys. Soc. Jap. 12 (1963), 328—331.
- Яглом А. М., Яглом И. М., Вероятность и информация. — М., Наука, 1973. — 512 с.
- Kullback S., Information theory and statistics. — Wiley, New York, 1959.
- Burg J.P., The Relationship Between Maximum Entropy Spectra and Maximum Likelihood Spectra, Geophysics 37(2) (1972), 375—376.
- Tsallis C., Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52 (1988), 479—487.
- Рудой Ю. Г., Обобщенная информационная энтропия и неканоническое распределение в равновесной статистической механике, ТМФ, 135:1 (2003), 3-54.
- Gorban, Alexander N.; Gorban, Pavel A.; Judge, George. Entropy: The Markov Ordering Approach. Entropy 12, no. 5 (2010), 1145—1193.
Ссылки
[править | править код]- SolidMinus. Разработка класса для работы с цепями Маркова . Хабрахабр (1 июня 2016). Дата обращения: 18 августа 2016.
В другом языковом разделе есть более полная статья Markov chain (англ.). |