t-критерий Стьюдента — Википедия
t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
t-статистика строится обычно по следующему общему принципу: в числителе — случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещённой оценки дисперсии.
История
[править | править код]Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).
Требования к данным
[править | править код]Для применения данного критерия необходимо, чтобы выборочные средние имели нормальное распределение. При маленьких выборках это означает требование нормальности исходных значений. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.
Также не вполне корректно применять t-критерий Стьюдента при наличии в данных значительного числа выбросов. При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики, среди которых наиболее известными являются U-критерий Манна — Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Уилкоксона (используются в случаях зависимых выборок).
Одновыборочный t-критерий
[править | править код]Применяется для проверки нулевой гипотезы о равенстве математического ожидания некоторому известному значению .
Очевидно, при выполнении нулевой гипотезы . С учётом предполагаемой независимости наблюдений . Используя несмещённую оценку дисперсии получаем следующую t-статистику:
При нулевой гипотезе распределение этой статистики . Следовательно, при превышении (в абсолютном измерении) значения статистики критического значения данного распределения (при заданном уровне значимости), нулевая гипотеза отвергается.
Двухвыборочный t-критерий для независимых выборок
[править | править код]Пусть имеются две независимые выборки объёмами , нормально распределённых случайных величин , . Необходимо проверить по выборочным данным нулевую гипотезу равенства математических ожиданий этих случайных величин .
Рассмотрим разность выборочных средних . Очевидно, если нулевая гипотеза выполнена, . Исходя из независимости выборок дисперсия этой разности равна . Тогда, используя несмещённую оценку дисперсии , получаем несмещённую оценку дисперсии разности выборочных средних: . Следовательно, -статистика для проверки нулевой гипотезы равна
Эта статистика при справедливости нулевой гипотезы имеет распределение , где .
Случай одинаковой дисперсии
[править | править код]В случае, если дисперсии выборок предполагаются одинаковыми, то
Тогда -статистика равна:
Эта статистика имеет распределение .
Двухвыборочный t-критерий для зависимых выборок
[править | править код]Для вычисления эмпирического значения -критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:
где — средняя разность значений, — стандартное отклонение разностей, а n — количество наблюдений.
Эта статистика имеет распределение .
Проверка линейного ограничения на параметры линейной регрессии
[править | править код]С помощью t-теста можно также проверить произвольное (одно) линейное ограничение на параметры линейной регрессии, оценённой обычным методом наименьших квадратов. Пусть необходимо проверить гипотезу . Очевидно, при выполнении нулевой гипотезы . Здесь использовано свойство несмещённости МНК-оценок параметров модели . Кроме того, . Используя вместо неизвестной дисперсии её несмещённую оценку , получаем следующую t-статистику:
Эта статистика при выполнении нулевой гипотезы имеет распределение , поэтому если значение статистики выше критического, то нулевая гипотеза о линейном ограничении отклоняется.
Проверка гипотез о коэффициенте линейной регрессии
[править | править код]Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента регрессии некоторому значению . В этом случае соответствующая t-статистика равна:
где — стандартная ошибка оценки коэффициента — квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.
При справедливости нулевой гипотезы распределение этой статистики — . Если значение статистики по абсолютной величине выше критического значения, то отличие коэффициента от является статистически значимым (неслучайным), в противном случае — незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению ).
Замечание
[править | править код]Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому регрессии и есть выборочная оценка дисперсии изучаемой случайной величины, матрица равна , а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведённое выше для общего случая.
Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): . Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведённой для двухвыборочного теста.
Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведённой для двухвыборочного теста.
Непараметрические аналоги
[править | править код]Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна — Уитни. Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона.
См. также
[править | править код]Литература
[править | править код]Student. The probable error of a mean. // Biometrika. 1908. № 6 (1). P. 1-25.