Herons formel – Wikipedia

Herons formel anger sambandet mellan en godtycklig triangels area och dess sidor a, b, c samt semiperimetern (halva omkretsen) s enligt[1]

där alltså

Formelns namn kommer från den grekiske matematikern Heron, men formeln upptäcktes troligen inte av honom, utan av Arkimedes.[2]

Herons formel för trianglar är ett specialfall av en mer generell identitet för cykliska fyrhörningar. Genom att nyttja Herons formel och den aritmetiska-geometriska olikheten kan man bevisa den isoperimetriska egenskapen för liksidiga trianglar.

Låt vara sidorna i en triangel och låt vara motstående vinkel till sidan . Enligt cosinussatsen gäller

Detta ger (via trigonometriska ettan):

Triangelns höjd mot basen har längden varav följer (med hjälp av konjugatregeln och kvadreringsreglerna):