İrrasyonel sayılar - Vikipedi
İrrasyonel sayılar, rasyonel sayılar kümesine dahil olmayan gerçek sayılardır. Payı ve paydası birer tam sayı olan bir kesir olarak ifade edilemeyen bu sayılara (pi sayısı), (e sabiti), (2'nin karekökü) ve (3'ün karekökü) örnek verilebilir. veya ile gösterilir.[1] Bu sayıların ondalık açılımı, kendini tekrar etmeden, sonsuza kadar sürer. Bu açılım irrasyonel sayıların hemen hemen hepsinde (örneğin pi sayısında, ) düzensizdir; ancak bir düzen de gösterebilir, örneğin bütün sayıların sırayla yazılmasıyla edilecek 0,12345678910111213... sayısı irrasyoneldir. İrrasyonel sayıların ilk gerçek değerini Archimedes kullanmıştır.
Bir dik üçgenin dik kenarları aynı uzunluktaysa ve rasyonel sayı ile ifade edilebiliyorsa, hipotenüs her zaman irrasyoneldir. Dik kenar ise, hipotenüs olacaktır.
- Örnekler
-
- irrasyonel sayıdır
- irrasyonel sayıdır
- irrasyonel sayıdır
- irrasyonel sayıdır
- irrasyonel sayı değildir çünkü rasyonel karşılığı vardır
- irrasyonel sayı değildir çünkü rasyonel karşılığı vardır
Kaynakça
[değiştir | kaynağı değiştir]- ^ Weisstein, Eric W. "Irrational Number". mathworld.wolfram.com (İngilizce). 29 Şubat 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Şubat 2021.
Ayrıca bakınız
[değiştir | kaynağı değiştir]Matematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |