Поверхня Безьє — Вікіпедія

Поверхня Безьє є різновидом математичного сплайна, використовуваним в комп'ютерній графіці, автоматизованому проектуванні і моделюванні методом скінченних елементів. Як і у випадку кривої Безьє, поверхня Безьє визначається набором контрольних точок. Попри значну подібність до інтерполяції, основна відмінність полягає в тому, що поверхня, в загальному випадку, не проходить через центральні контрольні точки; скоріше, вона «розтягується» відносно них так, ніби кожна з них є центром тяжіння. Поверхні Безьє візуально впізнавані, і математично зручні для багатьох застосувань.

Історія

[ред. | ред. код]

Поверхні Безьє були вперше описані в 1962 році французьким інженером П'єром Безьє, який використовував їх для проектування автомобільних кузовів. Поверхні Безьє можуть бути будь-якого степеня, але бікубічні поверхні Безьє зазвичай забезпечують достатню кількість ступенів вільності для більшості потреб.

Рівняння поверхні

[ред. | ред. код]
Приклад поверхні Безьє

Поверхня Безьє порядку задається контрольними точками . Вона відображає одиничний квадрат гладкою безперервною поверхнею, вкладеною в простір тієї ж розмірності, що і {}. Наприклад, якщо P — це точки в чотиривимірному просторі, то поверхня також буде в чотиривимірному просторі. Двовимірна поверхня Безьє може бути визначена як параметрична поверхня, коли становище точки р як функції параметричних координат u, v визначається за формулою:[1]

де , а - многочлени Бернштейна:

Деякі властивості поверхонь Безьє:

  • Поверхня Безьє перетворюється так само, як і її контрольні точки при всіх лінійних перетвореннях та зрушеннях.
  • Усі u = const і  v = const лінії в просторі (u, v), і, зокрема, всі чотири ребра деформованого одиничного квадрата (u, v) є кривими Безьє.
  • Поверхня Безьє буде повністю лежати всередині опуклої оболонки своїх контрольних точок, і, отже, також повністю в межах рамки своїх контрольних точок в будь-якій заданій декартовій системі координат.
  • Точки на латці, відповідній кутам деформованого одиничного квадрата, збігаються з чотирма контрольними точками.
  • Проте, поверхня Безьє, як правило, не проходить через інші свої контрольні точки.

Поверхні Безьє в комп'ютерній графіці

[ред. | ред. код]
Модель «Gumbo» Едвіна Кетмелла складена з латок

Латкові сітки Безьє перевершують трикутні сітки як метод представлення гладких поверхонь, оскільки вони набагато компактніші, ними легше маніпулювати, і вони мають набагато кращі властивості безперервності. Крім того, інші загальні параметричні поверхні, такі як сфери і циліндри можна добре апроксимувати відносно невеликим числом кубічних латок Безьє.

Латку Безьє порядку можна побудувати з двох трикутників Безьє порядку m+n, або з одного трикутника Безьє порядку m+n, з областю визначення у вигляді квадрата замість трикутника.

Трикутник Безьє степеня m може бути також побудований з поверхні Безьє (m, m) порядку, з такими контрольними точками, щоб один край був стиснутий в точку, або з областю визначення даних у вигляді трикутника, а не квадрата.

Примітки

[ред. | ред. код]
  1. Farin, Gerald. Curves and Surfaces for CAGD (вид. 5th). Academic Press. ISBN 1-55860-737-4.

Література

[ред. | ред. код]
  • Роджерс Д., Адамс Дж. Математичні основи машинної графіки.
  • BEZIER_SURFACE. Routines for Bezier Surface Information  (англ.) — Бібліотека функцій Matlab и Fortran, що дозволяє досліджувати властивості поверхонь Безьє. Розповсюджується згідно з ліцензією LGPL.

Див. також

[ред. | ред. код]