模算數 - 维基百科,自由的百科全书
模算數或稱同餘運算(英語:Modular arithmetic)是一個整数的算术系統,其中數字超過一定值後(稱為模或餘數)後會「捲回」到較小的數值,模算數最早是出現在卡爾·弗里德里希·高斯在1801年出版的《算术研究》一書中。
模算數常見的應用是在十二小時制,將一天分為二個以十二小時計算的單位。假設現在七點,八小時後會是三點。用一般的算術加法,會得到7 + 8 = 15,但在十二小時制中,超過十二小時會歸零,不存在「十五點」。類似的情形,若時鐘目前是十二時,二十一小時後會是九點,而不是三十三點。小時數超過十二後會再回到一,為模12的模算數系統。依照上述的定義,12和12本身同餘,也和0同餘,因此12:00的時間也可以稱為是0:00,因為模12時,12和0同餘。
同餘關係
[编辑]模算數可以在導入整數的同餘關係後,通过经典算数的运算法则来推导模运算的运算法则。若有两个正整数和,并且二數的差值為的整數倍數,我们就可以说和在模下同餘。数学式表达为:[1]
例如
因為38 − 14 = 24,是12的倍數。
上述的概念也對負數有效:
而同餘關係也可以用計算带余除法中的余数来理解。若正整数和在除以后的余数相同,。例如:
因為38和14除以12時,餘數都為2。這是因為38 − 14 = 24是12的整數倍。
运算定律
[编辑]如果,,为任何正整数,
那么我们有以下运算定律:[2]
應用
[编辑]模算數在数论、群论、环论、紐結理論、抽象代数、計算機代數、密码学、计算机科学及化學中都有使用[3],也出現在視覺藝術及音乐。
模算數是数论的基礎之一,也提供了群论、环论及抽象代数中一些重要的範例。
模算數也常作為識別碼的校验码。例如国际银行账户号码(IBAN)就用模97的餘數來避免輸入編號時的錯誤。
在密碼學中,模算數是 RSA及迪菲-赫爾曼等公开密钥加密系統的基礎,也提到了和 椭圆曲线有關的有限域,用在許多的对称密钥算法中,包括高级加密标准(AES)、國際資料加密演算法(IDEA)、及RC4。RSA和迪菲-赫爾曼密鑰交換用到了模冪。
在電腦代數中,模算數常用來限制中間計算的整數係數大小,也限制計算中用到的資料。模算數用在多項式分解中(其中所有已知有效率的演算法都用到了模算數),而針對整數及有理數的多項式最大公因式、线性代数及Gröbner基,最有效率解法都用到了模算數。
計算機科學中,模算數會以位操作的方式表示,也和其他定長度、循環式的数据结构有關。許多编程语言及计算器中都有模除,而XOR是二個位元在模2下的和。
化學中,表示化合物編號的CAS号,最後一碼是校验码,是將CAS号前二位數乘以1、下一位乘以2,再下一位乘以3……,最後對10取餘數而得。
音樂上,模12的模算數用在十二平均律的系統中,其中有純八度及異名同音的情形(例如升音符的C音和降音符的D音會視為是同一個音)。
去九法是徒手計算時快速的檢查工具,是以模9的模算數為基礎,而且其中最重要的性質是。
模7的模算數在許多計算特定日期是星期幾的演算法中出現,特別是蔡勒公式及判决日法则中。
模算數也用在像法律(像分配 (政治))、经济学(像博弈论),若一些社会科学的分析會強調資源的比例分割及分配,也會用到模算數。
相關條目
[编辑]參考資料
[编辑]- ^ Emanuel Lazar. Math 170 lecture notes (PDF). UPenn: 73. April 30, 2016 [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
- ^ Sandor Lehoczky; Richard Rusczky. David Patrick , 编. the Art of Problem Solving Vol. 1 7. : 44. ISBN 0977304566 (英语).
- ^ Sharky Kesa; et al. Modular Arithmetic. Brillant. [2021-10-23]. (原始内容存档于2021-10-26).