حديد - ويكيبيديا

كوبالتحديدمنغنيز
-

Fe

Ru
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنيسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سيليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: آرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونتيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بلاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسيوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: نيهونيوم (Nh)
Element 114: فليروفيوم (Uuq)
Element 115: موسكوفيوم (Mc)
Element 116: ليفرموريوم (Lv)
Element 117: تينيسين (Ts)
Element 118: أوغانيسون (Og)
26Fe
المظهر
رمادي فلزي
A rough wedge of silvery metal

الخطوط الطيفية للحديد
الخواص العامة
الاسم، العدد، الرمز حديد، 26، Fe
تصنيف العنصر فلز انتقالي
المجموعة، الدورة، المستوى الفرعي 8، 4، d
الكتلة الذرية 55.845 غ·مول−1
توزيع إلكتروني Ar]; 3d6 4s2]
توزيع الإلكترونات لكل غلاف تكافؤ 2, 8, 14, 2 (صورة)
الخواص الفيزيائية
الطور صلب
الكثافة (عند درجة حرارة الغرفة) 7.874 غ·سم−3
كثافة السائل عند نقطة الانصهار 6.98 غ·سم−3
نقطة الانصهار 1811 ك، 1538 °س، 2800 °ف
نقطة الغليان 3134 ك، 2862 °س، 5182 °ف
حرارة الانصهار 13.81 كيلوجول·مول−1
حرارة التبخر 340 كيلوجول·مول−1
السعة الحرارية (عند 25 °س) 25.10 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 1728 1890 2091 2346 2679 3132
الخواص الذرية
الكهرسلبية 1.83 (مقياس باولنغ)
طاقات التأين الأول: 762.5 كيلوجول·مول−1
الثاني: 1561.9 كيلوجول·مول−1
الثالث: 2957 كيلوجول·مول−1
نصف قطر ذري 126 بيكومتر
نصف قطر تساهمي (لف مغزلي منخفض) 132±3،

(لف مغزلي مرتفع) 152±6 بيكومتر

خواص أخرى
البنية البلورية مكعب مركزي الجسم
المغناطيسية مغناطيسية حديدية
1043 كلفن
مقاومة كهربائية 96.1 نانوأوم·متر (20 °س)
الناقلية الحرارية 80.4 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري 11.8 ميكرومتر·متر−1·كلفن−1 (25 °س)
سرعة الصوت (سلك رفيع) (درجة حرارة الغرفة) 5120 متر·ثانية−1
معامل يونغ 211 غيغاباسكال
معامل القص 82 غيغاباسكال
معامل الحجم 170 غيغاباسكال
نسبة بواسون 0.29
صلادة موس 4
صلادة فيكرز 608 ميغاباسكال
صلادة برينل 490 ميغاباسكال
رقم CAS 7439-89-6
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الحديد
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
54Fe 5.8% >3.1×1022 سنة ? 54Cr
55Fe مصطنع 2.73 سنة ε 0.231 55Mn
56Fe 91.72% 56Fe هو نظير مستقر وله 30 نيوترون
57Fe 2.2% 57Fe هو نظير مستقر وله 31 نيوترون
58Fe 0.28% 58Fe هو نظير مستقر وله 32 نيوترون
59Fe مصطنع 44.503 يوم β 1.565 59Co
60Fe مصطنع 2.6×106 سنة β 3.978 60Co

الحديد عنصرٌ كيميائي رمزه Fe وعدده الذرّي 26، ينتمي إلى عناصر المستوى الفرعي d ويقع على رأس عناصر المجموعة الثامنة في الجدول الدوري، ويصنّف كيميائيًا ضمن الفلزّات الانتقالية. قياسًا إلى الكتلة يأتي الحديد في المرتبة الأولى من حيث وفرة العناصر الكيميائية في الأرض (32.1%)، وخاصّةً في اللبّ الداخلي واللبّ الخارجي في باطن الأرض، في حين يأتي في المرتبة الرابعة من حيث وفرة العناصر الكيميائية في القشرة الأرضية، وذلك بعد الأكسجين والسيليكون والألومنيوم، فهو ثاني الفلزّات وفرةً في القشرة الأرضية؛ لذلك تنتشر خامات الحديد في عددٍ من مناطق العالم.

يستلزم استخراج الحديد من خاماته تطبيق درجات حرارة مرتفعة في القمائن أو الأفران تصل إلى 1500 °س أو أكثر، وهي درجات حرارة أعلى بقرابة 500 °س من تلك المتطلّبة لصهر النحاس؛ لذلك فإنّ الفلزّ الأخير اكتشف قبل الحديد في تاريخ تطوّر البشرية. تمكّن الإنسان من اكتشاف الحديد في أوراسيا في الألفية الثانية قبل الميلاد، بدأ انتشار استخدام الأدوات والمعدّات الحديدية قرابة 1200 سنة قبل الميلاد، لتحلّ مكان الأدوات المصنوعة من سبائك النحاس مثل البرونز. كانت تلك الفترة الزمنية فاصلة في تاريخ البشرية، إذ تمثّل الانتقال من العصر البرونزي إلى العصر الحديدي. تمكّن الإنسان فيما بعد من تطوير سبائك مختلفة للحديد، أهمّها سبائك الفولاذ [ملاحظة 1] المختلفة، مثل الفولاذ المقاوم للصدأ والفولاذ السبائكي، وكذلك الحديد المطاوع وحديد الصب [ملاحظة 2].

يكون الحديد في الحالة النقية وبمعزلٍ عن الهواء في الظروف القياسية على شكل فلزّ ذي لون رمادي فضّي، وتكون سطوحه ناعمة وملساء. بالمقابل يؤدّي التماس مع أكسجين الهواء وبوجود الرطوبة إلى تفاعل الحديد وتشكيله طبقةً بنّيّةً محمرّةً من أكاسيد الحديد المُمَيّهة، والتي تدعى بالاسم الشائع «الصَدَأ». على العكس من أكاسيد الفلزّات الأخرى القادرة على تشكيل طبقات أكسيد مُخَمِّلة، فإنّ صدأ الحديد يشغل حجمًا أكبر من الفلزّ ذاته، ما يؤدّي إلى تقشّر سطح الحديد عندما يصدأ، ويفتح المجال إلى صدأ طبقات جديدة، وهكذا دواليك. من الناحية الكيميائية للحديد حالتا أكسدة شائعتان، وهما الحديد الثنائي والحديد الثلاثي. يشترك الحديد في خواصّه العامّة مع خواص الفلزّات الانتقالية الأخرى، بما في ذلك عُنصرَي المجموعة الثامنة المتبقِّيَين: الروثينيوم والأوزميوم. يشكّل الحديد عددًا كبيرًا من المركّبات الكيميائية في مختلف حالات الأكسدة من −2 إلى +7؛ بالإضافة إلى تشكيل عددٍ من المعقّدات التناسقية مثل الفِرّوسين وفِرّي أكسالات البوتاسيوم وأزرق بروسيا، والتي لها عددٌ من التطبيقات المعروفة.

يحوي الإنسان البالغ على قرابة 4 غرامات من الحديد، أي ما يعادل 0.005% من وزن الجسم، وذلك غالبًا على شكل هيموغلوبين وميوغلوبين. يقوم جزيئا البروتين المذكورَين بدورٍ مهمٍّ في استقلاب الفقاريات، وذلك بوظيفتين على الترتيب؛ نقل الأكسجين في الدم، وتخزينه في العضلات. لذلك يعدّ وجود الحديد في الجسم ضررويًا، وهو من المغذّيات الأساسية، إذ يدخل في الدورة الاستقلابية، لذلك ينبغي تعويضه ضمن الطعام بشكلٍ مستمرٍّ. يوجد الحديد أيضًا في المواقع النشطة في عددٍ من إنزيمات الأكسدة والاختزال المهمّة والضرورية للتنفّس الخليوي عند النباتات والحيوانات.

التاريخ

[عدل]

لا يوجد شكٌّ في أنّ الحديد كان واحدًا من العناصر المعروفة للإنسان القديم؛[1] إذ توجد أدلّة وشواهد تاريخية متنوّعة على استخدامه في مختلف الحضارات من عمليات التنقيب الأثرية في مختلف أرجاء العالم؛ إلّا أنّ تلك الشواهد التاريخية تعدّ قليلةً نسبيًا بالمقارنة مع القطع الأثرية المصنوعة من البرونز، أو تلك المصنوعة من الفلزّات النبيلة مثل الذهب والفضّة. قد يعود ذلك إلى أنّ استخدام الحديد كان محدودًا في الفترات التاريخية القديمة، ومن جهةٍ أخرى لأنه عرضةٌ للتآكل في الأجواء الرطبة،[1] لذلك فإنّ الكثير من تلك المُقتَنَيات المصنوعة من الحديد قد فَنِيَت مع مرور الزمن، ولم يبقَ إلا الضخم منها والمحفوظ ضمن ظروفِ خاصّةٍ.[de 1]

العصور القديمة

[عدل]

الاستخدام المبكر للحديد النيزكي

[عدل]
استُخدم هذا الرمز منذ القدم في بعض الثقافات للإشارة إلى الحديد، وهو مستخدمٌ أيضًا للإشارة إلى كوكب المرّيخ.

قبل أن يتعلّم الإنسان في مختلف الحضارات القديمة استخراج الحديد من خاماته، كان الإنسان حتّى قبل بداية العصر الحديدي على تماسٍ مع الحديد من خلال الأحجار النَيزَكية المنتشرة على سطح الأرض في عصر ما قبل التاريخ؛ إذ يعود تاريخ أقدم المنتجات الحديدية إلى الألفية الخامسة قبل الميلاد، وكانت مصنوعةً من النيازك.[2] خُصِّصَ هذا النوع من الحديد لاحقًا باسم «الحديد النَيزَكِي» [ملاحظة 3]، وهو يتميّز بارتفاع محتوى عنصر النيكل فيه (5-18%). ونظرًا لنُدرَته فقد كان الحديد النيزكي قيّمًا، وكان اسمه في اللغة الهيروغليفية المصرية يشير إلى هبوطه من السماء؛[de 2] وكان يستخدم في صناعة الأسلحة والأدوات اللازمة لطقوس فتح الفم، بالإضافة إلى استخدامه في صناعة التمائم والحُلِي من جهةٍ أخرى.[de 3] وعُثِرَ في مصر القديمة على خَرَزٍِ للزينة مصنوعٍ من الحديد النيزكي، والتي تعود إلى حضارة جَرْزَة قرابة 3500 سنة قبل الميلاد.[1][3] كما عُثِرَ أيضًا على خنجرٍ من الحديد النيزكي في قبر توت عنخ آمون، وما أكّد مصدره النيزكي أنّ نسبة العناصر الكيميائية من الحديد والكوبالت والنيكل مماثلة لنسبتها في حجرٍ نيزكيٍّ مكتشفٍ بالقرب من تلك المنطقة، والذي ربما يكون هبط من زخّة شهبٍ قديمًا.[4][5][6]

عُثِرَ أيضًا في منطقة بلاد الرافدين على مكتشفاتٍ أثريّةٍ مصنوعةٍ من الحديد النيزكي؛ فبالقرب من مدينة أور عُثِرَ على خنجرٍ ذي نصلٍ مصنوعٍ من حديد نيزكي يعود إلى الحضارة السومرية قبل قرابة 3100 سنة قبل الميلاد.[de 2] بالمقارنة مع الأنواع الأخرى فإنّ الحديد النيزكي طريٌّ ومطواعٌ نسبيًا، وقابلٌ للسحب والطرق، ومن السهل تطريقه على البارد، لكنْ من السهل أن يتقصّف عند تسخيته، بسبب الارتفاع النسبي لمحتوى النيكل فيه.[de 4]

الاستخراج من الخامات الأرضية

[عدل]
حَرْبُون عُثِرَ عليه في غرينلاند مصنوعٌ من جذعٍ مأخوذٍ من حربة حريش البحر ومن رأسٍ حديديٍّ مأخوذٍ من حجر رأس يورك النيزكي [ملاحظة 4]، وهو واحدٌ من أكبر الأحجار النيزكية المعروفة.

بدأ تعدين الحديد منذ العصر البرونزي الأوسط، ثمّ تطلّب الأمر مرورَ عدّة قرونٍ إلى أنْ حلّ الحديد مكان البرونز في صناعة العِدَد والأسلحة. لم تكن الحرارة الناتجة كافيةً لصهر الحديد، لذا فإنّ الجزء السفلي من المعدن الناتج يكون على شكل كتلةٍ إسفنجية، تعجُّ بالمسام الممتلئة بالرماد والخبث. يعاد تسخين الحديد الناتج لتليينه وصهر الخَبَث، ثُمّ يُطرق مرارًا وتكرارًا لإزالة الخَبَث المنصهر، وناتج هذه العملية الطويلة والشاقّة هو «الحديد المطاوع» [ملاحظة 5]، وهو سبيكة مرنة ولكن ضعيفة نوعًا ما. تشير القطع الأثرية المُكتَشفة من آسيا الوسطى وبلاد الرافدين وبلاد الشام إلى أنّها مصنوعةٌ من الحديد المستخرج في فترة زمنية تقع بين 3000 إلى 2700 سنة قبل الميلاد.[1] إذ عُثرَ في إشنونة -الواقعة حاليًا في العراق- على خنجرٍ ذي نصلٍ مصنوعٍ من حديدٍ خالٍ من النيكل، ما يشير إلى استخراجه من مصادرَ أرضيةٍ وليس من الأحجار النيزكية.[de 2][7][8]

عمود دلهي الحديدي مثالٌ على استخراج الحديد ومعالجته في الهند القديمة.

عَرَف الحيثيّون هذا الفلزّ أيضًا؛ إذ تشير الكتابات الأثرية في أرشيف بوغاز كوي إلى أنّ الحديد كان معروفًا أثناء حقبة الملك الحيثي أنيتا [ملاحظة 6] (قرابة 1800 سنة قبل الميلاد)؛[de 2] وتشير الاكتشافات إلى قيام الحيثيين بصهر الحديد في الفترة ما بين 1500 إلى 1200 سنة قبل الميلاد؛ وذلك في أفرانٍ يستخدم فيها منفاخٌ لضخّ الهواء خلال كومة من الحديد الخام المدفون في الفحم.[9][10] في البداية صنع الحيثيون الحليّ من الحديد،[11] كما قايضوه مقابل الفضّة مع الآشوريين في القرن الرابع عشر قبل الميلاد؛[2] وبذلك شاع استخدام الحديد في باقي مناطق الشرق الأدنى إلى حين سقوط إمبراطورية الحيثيين قرابة سنة 1180 قبل الميلاد في الفترة التاريخية التي تمثّل بداية العصر الحديدي.[1][de 1] تميّزت بداية العصر الحديدي بانهيارٍ متسارعٍ للحضارات والثقافات التي كانت سائدة في العصر البرونزي؛ وتزامنت المئوية الأولى من العصر الحديدي مع حلول العصور المظلمة اليونانية، والتي هُدّمت فيها العديد من المدن وتضرّرت التجارة وتقطّعت طرقها، كما تراجع إنتاج الأدوات المعدنية تراجعًا كبيرًا. اختلف انتقال مناطق العالم القديم إلى العصر الحديدي، فبلاد ما بين النهرين انتقلت كلّيًا للعصر الحديدي قرابة سنة 900 قبل الميلاد. ومع أنّ مصر القديمة بدأت تنتج الحديد منذ وقتٍ مبكّرٍ، إلّا أنّ العصر البرونزي ظلّ مسيطرًا عليها حتّى الغزو الآشوري لها في سنة 663 قبل الميلاد، وقرابة سنة 500 قبل الميلاد أصبحت النوبة منتِجَاً ومصدِّراً رئيساً للحديد.[12]

عَرَف العديد من الحضارات الفولاذ، والذي كان يُحصَل عليه في أفران الحديد الخالص [ملاحظة 7]، فكان الحدّادون في المناطق غربيّ جبال زاغروس ماهرين في إنتاج الفولاذ الجيّد قرابة 1000 سنة قبل الميلاد.[1] وهناك بقعٌ جغرافية أخرى شهدت تطوّر وسائل تعدين الحديد، إذ تشير الدلائل أيضًا إلى صهر الحديد في القارة الأفريقية قرابة القرن الثامن قبل الميلاد، وذلك في زمبابوي؛[1] وجنوب الصحراء الكبرى؛[13] وذلك في مواقع عدّة مثل نجد ترميت [ملاحظة 8] في النيجر، وفي موقع تاروغا [ملاحظة 9] الأثري جنوب شرقي نيجيريا.[de 1]

كما شهدت شبه القارة الهندية تطوّرًا في المعارف المتعلّقة بتعدين الحديد، إذ تشير بعض الدلائل إلى إنتاج الحديد المطاوع عن طريق صهر خاماته في الفترة الواقعة بين 1800 إلى 1200 سنة قبل الميلاد في الهند؛[14] كذلك توجد إشارات إلى الحديد في النصوص الهندوسية مثل أتهارفافيدا [ملاحظة 10].[15] كما ظهرت بعد ذلك نماذج محسّنة ومطوّرة مثل الفولاذ الهندواني [ملاحظة 11] قرابة 300 سنة قبل الميلاد.[de 2] ففي جنوب الهند وسيريلانكا تمكّن الإنسان من إنتاج فولاذ مرتفع الجودة بصهر الحديد الخام والفحم والزجاج في بواتق حتّى ينصهر الحديد ويذيب الكربون.[16] انتقلت تلك الفكرة من الهند إلى الصين بحلول القرن الخامس الميلادي، ثم انتشر استخدام الحديد في الصين في الفترة ما بين 700 إلى 500 سنة قبل الميلاد؛[17] وكانت طرائق وعمليات صهر الحديد قد وصلت إليها عبر آسيا الوسطى.[18] تمكن الصينيون من إنتاج حديد الصبّ أوّل مرّة في القرن الخامس قبل الميلاد.[19] عُثِرَ على أقدم الآثار المصنوعة من الحديد الصبّ في الصين في مقاطعة جيانغسو، واستخدمه الصينيون القدماء في مجال صناعة الأسلحة وفي البناء والزراعة.[20] استخدمت أفران الدَسْت [ملاحظة 12] في فتراتٍ عاصرت حقبة الممالك المتحاربة (403–221 سنة قبل الميلاد).[de 5] بقي استعمال الأفران اللافحة وأفران الدَسْت مُستمرًّا خلال حِقْبَتَي سُلالَتي سونغ وتانغ الحَاكِمَتَين.[21][22]

منجل حديدي يعود إلى اليونان القديمة.

تعود أقدم الآثار لاستخراج الحديد في المناطق اليونانية إلى قرابة 2000 سنة قبل الميلاد على شكل خَبَثِ في موقع هاغيا تريادا الأثري على جزيرة كريت.[de 2] انتشر استخدام الحديد في اليونان القديمة في نهاية القرن الحادي عشر قبل الميلاد، ومنها وصل إلى أوروبا.[de 6] تعدّ بعض المُقْتَنَيات من الحضارة الإتروسكانية والمُكتَشَفة بالقرب من قبورٍ في مدينة بولونيا الإيطالية واحدةً من أقدم المكتشفات الأثرية الأوروبية للحديد، وهي تعود إلى قرابة القرن التاسع قبل الميلاد.[de 7] يُقَسّم العصر الحديدي في وسط أوروبا إلى فترَتين زمنيَّتَين، وهما حضارة هالستات (من 800-450 سنة قبل الميلاد) وحضارة لاتين (بداية من 450 سنة قبل الميلاد).[de 1] ترافق انتشار صناعة الحديد في وسط وغربي أوروبا مع توسّع القلط، ووفقًا للكاتب ابلينيوس الأكبر كان استخدام الحديد شائعًا في حقبة روما القديمة.[1]

العصور الوسطى

[عدل]
رسومات صينية تعود إلى القرن السابع عشر تظهر عمّالًا بالقرب من فرنٍ لافحٍ في أثناء إنتاج الحديد المطاوع.

أثناء فترة العصور الوسطى طُوّرت طرائق إنتاج الحديد المطاوع؛ إذ انتشرت ورشات الحدادة التي قامت بتحويل الحديد الغُفْل إلى الحديد الممتاز [ملاحظة 13]، وكان وقود الفحم النباتي أساسيًّا في تلك العمليّات.[23] تقدّمت صناعة الحديد أكثر وأكثر باختراعات المسلمين خلال العصر الذهبي للإسلام، وشمل ذلك إنشاء مواقعَ لإنتاج المعادن. وبحلول القرن الحادي عشر انتشرت تلك المنشآت في الولايات الإسلامية كلّها من الأندلس وشمال أفريقيا غربًا إلى آسيا الوسطى شرقًا.[24] كما توجد دلائلٌ تشير إلى استخدام ما يشبه الفرن اللافح في عصري الدولة الأيوبية والمماليك.[25] حضّر يعقوب بن إسحاق الكندي (ت 260هـ، 873م) أنواعًا من الحديد الفولاذ بأسلوب المزج والصهر، فقد مَزَج كمّيّة من الحديد المطاوع، وكمّيّة أخرى من الحديد الصلب وصهرهما معًا ثم سخّنهما إلى درجة حرارة معلومة بحيث نتج عن ذلك حديد يحتوي على نسبةٍ من الكربون تتراوح بين (0.5 و 1.5%)، ومع الوقت اكتشف الحدّادون أنّ الحديد المطاوع يمكن أن يتحوّل إلى منتجٍ أقوى بكثيرِ عن طريق تسخينه في وعاءِ يحتوي على الفحم النباتي لبعض الوقت، ومن ثمّ غمره في الماء أو الزيت حتى يبرد، وبذلك اخترع المسلمون أحد أشهر أنواع الفولاذ في العصور الوسطى وهو الفولاذ الدمشقي، واستخدموه في صناعة السيوف، في الفترة من سنة 900 إلى سنة 1750.[26] أُنتِجَ هذا الفولاذ باستخدام بواتقَ بطريقةٍ تشبه الطريقة الهندية، ولكنه يحتوي على الكربيدات ما يجعل السيوف أكثر كفاءةً في القطع.[27][28]

ونتيجةً لنشاط الطُرُق التجارية ببن الشرق الأدنى والشرق الأقصى وصلت تقانات إنتاج الفولاذ إلى الصين؛ ففي القرن الحادي عشر صنع الصينيون الفولاذ عن طريق إزالة الكربون جزئيًا بطَرْق الحديد طَرْقًا متكرّرًا مع نفخ الهواء البارد.[29] واستمرّت الصين بتطوير تقانات إنتاج الحديد وبقيت مركزًا مهمًّا للصناعات المعدنية.[de 1] وصلت تقانات الأفران اللافحة وإنتاج الفولاذ والحديد الصب إلى أوروبا في وقتٍ متأخّر، إذ تعود أقدم قطع الحديد الصبّ هناك والتي عثر عليها في السويد إلى الفترة الزمنية ما بين سنتي 1150 و1300 للميلاد،[de 8] وفي القرن الخامس عشر ظهرت الحاجة إلى تطوير صناعة الحديد في أوروبا مع ازدياد الطلب على إنتاج المصبوبات الحديدية من الطلقات الكروية للمدافع.[de 9]

كانت أفران الحديد الخالص هي الوسيلة الشائعة المنتشرة لتعدين الحديد إلى حين ظهور الأفران اللافحة. بَلَغَ طول الأفران اللافحة في القرون الوسطى قرابة ثلاثة أمتار (عشرة أقدام)، وكانت مصنوعةً من طابوق مقاوم للنيران، أمّا الهواء اللازم لإيقاد النار فكان يُنفَخ يدويًا بالكير. ومع أنه تطوّرَ تصميم الأفران اللافحة في العصور الحديثة، إلّا أنّها لا تزال تعمل على المبدأ نفسه الذي كان مستخدمًا في القرون الوسطى.[23]

العصور الحديثة

[عدل]
مخطّط منشور في أواخر القرن التاسع عشر يبيّن كيفية استخراج الحديد.

يعدّ أبراهام داربي الأول [ملاحظة 14] رائدًا في التأسيس لفكرة استخدام الأفران اللافحة العاملة بفحم الكوك لإنتاج حديد الصبّ وذلك بدلًا من الفحم النباتي، ففي سنة 1709 تمكّن داربي من تطوير أوّل فرنٍ من هذا النوع في مدينة برمنغهام البريطانية.[30] أتاح تطوّر صناعة الحديد ووفرته وانخفاض ثمنه في انطلاق الثورة الصناعية، فقد أصبح -مع تطوّر عمليات استخراجه- متاحًا ورخيص الثمن، ما وفّر مادّة بناءٍ أوّليةٍ أساسيةٍ، فقد استخدم في بناء أوّل جسرٍ حديديٍّ في سنة 1778، وهو لا يزال قائمًا حتى الآن. بالإضافة إلى بناء الجسور استخدم الحديد أيضاً في بناء خطوط السكك الحديدية، والتي ساهم تمديدها في سرعة انتشار التطوّر والحداثة. استُخدِمَ كذلك في بناء القوارب والسفن والأبنية والعمارات؛ بالإضافة إلى اسطوانات المحرّك البخاري.[23]

أثناء مطلع الثورة الصناعية في بريطانيا بدأ هنري كورت [ملاحظة 15] بتطوير عمليات تنقية الحديد وتحويله من حديد غفل إلى حديد مطاوع باستخدام طرائقَ مبتكرةٍ، ففي سنة 1783 سجّل كورت براءة اختراع لعملية التَسْويط [ملاحظة 16] من أجل تنقية خام الحديد، والتي طُوّرت لاحقًا.[31] انتشرت الأفران اللافحة لاستخراج الحديد في أوروبا، ويعود أقدم فرنٍ من هذا النوع في ألمانيا إلى سنة 1796.[de 10] في خمسينيات القرن التاسع عشر اخترع هنري بِسِمِر [ملاحظة 17] طريقةً جديدةً لإنتاج الفولاذ، والتي سُمّيت باسمه «عمليّة بِسِمِر» [ملاحظة 18]، ما جعل في النهاية عملية إنتاج الفولاذ أكثر اقتصادية، وانخفض بذلك إنتاج الحديد المطاوع بكمّيّات كبيرة.[32]

الوفرة الطبيعية

[عدل]

يأتي الحديد في المرتبة الأولى من حيث وفرة العناصر الكيميائية في الأرض (32.1%)،[33] مع وجود بعض المصادر التي تضعه في المرتبة الثانية بنسبة كتلية مقدارها 28.8%.[de 11] وهو يأتي في المرتبة الرابعة من حيث الوفرة في وشاح الأرض بنسبة 4.70%،[de 12] وفي المرتبة الرابعة أيضًا من حيث الوفرة في القشرة الأرضية بنسبة 5.63%؛[34] أمّا في مياه البحار والمحيطات فتبلغ نسبة الحديد المنحلّ 0.002 ميليغرام/الليتر فقط.[35]

الوفرة الكونية
قطعة معالجة سطحيًا من حجر نيزكي حديدي، وتبدو عليه بلّورات سبيكة الحديد والنيكل على أشكال فيدمان شتيتن البلّورية.[ملاحظة 19].

يحتل الحديد المرتبة السادسة وفقًا لوفرة العناصر الكيميائية الكلّية في الكون، أمّا بالنسبة للوفرة النسبية في الكون بالنسبة إلى السيليكون وبالنسبة لعدد الذرّات، فإنّ الحديد يأتي في المرتبة التاسعة.[36] يتخلّق الحديد في الكون أثناء الخطوة الأخيرة من عملية احتراق السيليكون في النجوم العملاقة.[de 13] يُظنّ أيضًا أنّ الكواكب الأرضية الأخرى -وهي عطارد والزهرة والمريخ بالإضافة إلى القمر- حاويةٌ أيضًا على نواةٍ فلزّيةٍ يتكوّن معظمها من الحديد، وكذلك الأمر مع الكويكبات من النوع-M. تعود وفرة الحديد في الكواكب الأرضية نتيجةً للأصل الكوني المشترك حيث ينتج الحديد بوفرة أثناء مرحلة اندماج الانفلات الحراري [ملاحظة 20] وانفجار المستعرات العظمى من النوع Ia [ملاحظة 21] والذي يؤدّي إلى بعثرة عنصر الحديد في الكون.[37][38] ويعود اللون الأحمر المسيطر على سطح كوكب المريخ إلى حطامٍ صخريٍّ غنيٍّ بأكاسيد الحديد.[39]

عنصر الحديد في الأرض
الهيماتيت

يعدّ الحديد أكثر العناصر الكيميائية وفرةً في الأرض، ويتركّز معظمه بالإضافة إلى النيكل في نواة الأرض، وذلك في اللبّ الداخلي واللبّ الخارجي لها.[40][41] يساهم الحديد المنصهر في باطن الأرض في تشكّل المجال المغناطيسي الأرضي.[de 14]

تعدّ النيازك الحديدية الشكل الرئيس للحديد الفلزّي الطبيعي على سطح الأرض، ويوجد تاريخيًا العديد من الأمثلة على المواقع الأثرية التي عثر فيها على أشياء مصنوعة بالتطريق البارد من الحديد النيزكي؛، وكان يستدلّ على ذلك بارتفاع محتوى النيكل فيها بالمقارنة مع الحديد المستخرَج من الخامات الأرضية. يتألّف قرابة 5% من الأحجار النيزكية من معدَنَين مميّزَين يتألّفان من الحديد والنيكل، وهما التاينيت [ملاحظة 22] (35–80% حديد) والكاماسيت [ملاحظة 23] (90–95% حديد).[42]

حديد طبيعي في صخر بازلتي.

يمثّل حديد السبخات [ملاحظة 24] إحدى الأشكال الطبيعية التي يمكن أن يعثر فيها على الحديد بشكله الطبيعي، كما يمكن أن يُعثَر عليه أيضًا بشكلٍّ نادرِ في صخور البازلت المتشكّلة من الصهارة الأرضية، والتي تلامست مع الصخور الرسوبية الغنيّة بالكربون، ما أدّى إلى التقليل من انفلاتية الأكسجين الغازي عن طريق الارتباط على شكل مركّبات مع العناصر المكوّنة لتلك الصخور، ما أتاح المجال للحديد أن يتبلور. يُعرَف الحديد المتشكّل حينها باسم «الحديد الأرضي»، [ملاحظة 25] وهو نادر الوفرة، إذ توجد فقط بضع مواقع جغرافية حاوية عليه مثل جزيرة ديسكو [ملاحظة 26] غربي غرينلاند، وكيان ساخا شمال شرقي روسيا.[43] لذلك ومن الناحية التصنيفية الجيولوجية وفق الجمعية الدولية للمعادن فإنّ الحديد الأرضي يصنّف ضمن المعادن.

المعادن الباطنية في الوشاح
طريق مليء بالمُغْرَة في بلدية رُوسْيُون [ملاحظة 27] في إقليم فوكلوز الفرنسي.

يشكّل محلول جامد من معدَني بيريكلاس [ملاحظة 28] (MgO) والفوستيت [ملاحظة 29] ما يدعى باسم «فروبيريكلاس» [ملاحظة 30]، وكذلك أيضاً باسم مغنيسيوفوستيت [ملاحظة 31]،[44] وهو مزيجٌ من أكسيدَي الحديد والمغنسيوم ويشكّل قرابة 20% من حجم وشاح الأرض السفلي، بالتالي فهو ثاني أكثر المعادن وفرةً في تلك الطبقة الباطنية من الأرض بعد بيروفسكيت السيليكات [ملاحظة 32] (سيليكات الحديد والمغنسيوم). تحدث في أسفل المنطقة الانتقالية للوشاح الأرضي تفاعلات تحوّل، من ضمنها تفاعل تحوّل الرينغووديت [ملاحظة 33] (وهو قريب من بنية غاما-أوليفين) إلى مزيج من الفروبيريكلاس وبيروفسكيت السيليكات؛ يشكّل مزيج المعادن الحاوية على سيليكات المغنسيوم والحديد معظم التركيب المعدني للوشاح الأرضي.[45][46]

القشرة الأرضية

على الرغم من وفرة الحديد في باطن الأرض، إلّا أنّ نسبته في تكوين القشرة الأرضية تبلغ فقط قرابة 5% من الكتلة الكلّية لها، وهو مع ذلك يأتي في المرتبة الرابعة، بعد الأكسجين والسيليكون والألومنيوم في ترتيب العناصر في تلك الطبقة.[47] يتّحد معظم الحديد في القشرة الأرضية مع عددٍ من العناصر الأخرى على هيئة معادن، والتي تشكّل خامات الحديد المختلفة. يعدّ الصنف الأكسيدي الحاوي على أشكال مختلفة من أكسيد الحديد من الأصناف المهمّة لتلك المعادن، ومن الأمثلة عليها كلّ من الهيماتيت [ملاحظة 34] (Fe2O3) والمغنيتيت [ملاحظة 35] (Fe3O4) والسيدريت [ملاحظة 36] (FeCO3)، بالإضافة أيضًا إلى الليمونيت [ملاحظة 37] (Fe2O3·n H2O) والغوتيت [ملاحظة 38] (FeO·OH)؛ وهي تمثّل أهمّ خامات الحديد.[de 15] اقتصاديًا يُستخرَج الحديد بشكلٍ رئيسٍ من معادن الهيماتيت والمغنيتيت والسيدريت.[de 16]

تكوينات حِزامية للحديد في ولاية مينيسوتا الأمريكية

تحوي العديد من الصخور النارية على معادن كبريتيدية للحديد مثل البيروتيت [ملاحظة 39] والبنتلانديت [ملاحظة 40].[48][49] توجد أيضًا كمّيّات معتبرة من الحديد في معدن البيريت [ملاحظة 41]، ولكن من الصعب استخلاص الحديد منه. يميل الحديد أثناء عمليات التجوية إلى أن يَرْشُحَ من الرسوبيات الكبريتيدية على شكل أملاح كبريتات، ومن الرسوبيات السيليكاتية على شكل بيكربونات؛ ثم يخضع هذان الشكلان إلى تفاعل أكسدة لاحق في المحاليل المائية، ويترسّب الحديد حتّى في أوساط pH مرتفعة على شكل أكسيد الحديد الثلاثي.[50]

توجد هناك رسوبيات جيولوجية كبيرة من الحديد على هيئة تكوينات حِزامية، وهي نوع من أنواع الصخور الحاوية على طبقات رقيقة من أكاسيد الحديد المتناوبة مع طبقات فقيرة بالحديد ومكوّنة من الطَّفْل الصفحي والصخر الصوّاني. يعود تاريخ الحديد المتوضّع في تلك التشكيلات إلى فترة تاريخية تقع بين 3700-1800 مليون سنة خلت؛[51][52] والتي تشكّلت من تفاعل الحديد مع الأكسجين الناتج عن عمليات التركيب الضوئي من البكتيريا الزرقاء.[de 17] تحوي القشرة الأرضية أيضًا معادن حاوية على مسحوق ناعم ودقيق من أكسيد أو أكسيد هيدروكسيد الحديد الثلاثي، مثل المُغْرَة [ملاحظة 42] والذي يستخدم بشكل واسع في تركيب الخُضُب منذ القدم.[de 16] تسهم تلك المعادن أيضًا في منح اللون لعددٍ من الصخور والغضار بشكلٍ مميّز مثلما هو الحال في طبقة الحجر الرملي الملوَّن [ملاحظة 43] المنتشرة في وسط أوروبا وغربيها.

الاستخراج والمعالجة الأولية

[عدل]
الإنتاج العالمي من الحديد في سنة 2009 مقدّرًا بملايين الأطنان [53]
البلد خام الحديد حديد غفل حديد إسفنجي فولاذ
 الصين 1,114.9 549.4 573.6
 أستراليا 393.9 4.4 5.2
 البرازيل 305.0 25.1 0.011 26.5
 اليابان 66.9 87.5
 الهند 257.4 38.2 23.4 63.5
 روسيا 92.1 43.9 4.7 60.0
 أوكرانيا 65.8 25.7 29.9
 كوريا الجنوبية 0.1 27.3 48.6
 ألمانيا 0.4 20.1 0.38 32.7
العالم 1,594.9 914.0 64.5 1,232.4

تعدّ الصين الدولة الرائدة في العالم في إنتاج الحديد الخام، حيث تُنتِج منذ بداية القرن الحادي والعشرين أكثر من 60% من الإنتاج العالمي من هذه الخامة. من الدول الرائدة أيضًا في إنتاج الحديد الخام كلُّ من اليابان والهند وروسيا وأستراليا والبرازيل وكوريا الجنوبية.[54] يزداد الطلب العالمي على الحديد باستمرار؛ ووفقًا لتقريرٍ دوليٍّ من الهيئة الدولية للموارد الطبيعية [ملاحظة 44] فإنّ الاستهلاك العالمي من الحديد في المجتمع هو 2.2 طنّ لكلّ نسمة؛ وهو يرتفع في الدول المتقدّمة ليصل إلى مجال بين 7-14 طنّ لكلّ نسمة.[55]

يُستخرَج خام الحديد بشكلٍ رئيسيٍّ وفق أساليب التعدين السطحي، كما هو الحال في منجم إل موتون [ملاحظة 45] في بوليفيا؛ بالمقابل، فمن النادر تعدين الحديد من باطن الأرض، مثلما هو الحال في منجم كيرونا [ملاحظة 46] في السويد. لأسبابٍ تقنيةٍ واقتصاديةٍ، فإنّه من المفضّل لخامات الحديد التي ستوضع في الفرن اللافح أن تكون ذا مواصفاتٍ فيزيائية وكيميائية متجانسة. قبل الإدخال إلى الفرن اللافح تخضع الخامات إلى عمليات تحضير من معالجات صناعيّة متعاقبة، تتضمّن التكسير ثم الطحن إلى كُرَيّات صغيرة ثمّ الغربلة. يشكّل مسحوق خام الحديد الدقيق الناتج من المعالجات على هيئة قطع صغيرة، وإلّا فإنّه سيتسبّب بمشاكل تقنية نتيجة إعاقته تشكيل تيارات هوائية لافحة في الفرن. [de 18] تتضمّن الطرائق المستخدمة في تشكيل القطع الصغيرة من المسحوق عمليّتا التلبيد [ملاحظة 47] والتحبيب [ملاحظة 48]، ويعتمد اختيار الطريقة على حجم الحُبَيبات؛ إذ تتطلّب عملية التلبيد أن يكون قطر الحُبَيبات أكبر من 2 ميليمتر، أمّا الحُبَيبات الأصغر فإنّها تخضع في العادة إلى عملية تحبيب.[de 19] يستخدم في عملية التحبيب مواد رابطة ضمن إضافات أخرى، والتي تُخلَط على هيئة مزيج ثم تقولَب على هيئة حُبَيبات تتراوح أقطارها بين 8 إلى 18 ميليمتر.[de 20] تُدخَل القطع الصغيرة من خامات الحديد على دفعات بكمّيّات صغيرة إلى الفرن.[de 19]

ازدياد الطلب العالمي على خام الحديد (مقدّرًا بملايين الأطنان)
(وفق بيانات هيئة المساحة الجيولوجية الأمريكية [ملاحظة 49])[56]

ازدياد الإنتاج العالمي من الحديد الخام (مقدّرًا بملايين الأطنان)
(وفق بيانات رابطة الفولاذ العالمية [ملاحظة 50])[57]

الإنتاج

[عدل]
مصهور الحديد ضمن حاوية في الفرن اللافح

في العصر الراهن يتطلّب إنتاج الحديد أو الفولاذ (الصلب) صناعياً عمليةً من مرحلتين؛ في المرحلة الأولى يُختزَل خام الحديد باستخدام فحم الكوك في فرن لافح؛ ثم يُفصَل الحديد المصهور عن الشوائب الكبرى الموجودة في المزيج مثل معادن السيليكات. تعطي هذه المرحلة سبيكةً من الحديد غنيّةً نسبياً بالكربون، وهي تسمّى «حديد غُفْل» [ملاحظة 51]. في المرحلة الثانية يُخفّض محتوى الكربون في الحديد الغُفْل ليعطي منتجاتٍ أخرى مثل «الحديد المطاوع» أو «الحديدالزهر» (أو حديد الصبّ) أو «الفولاذ» (أو الصُلْب).[58] يمكن إضافة فلزات أخرى في هذه المرحلة من أجل الحصول على سبائك فولاذ مختلفة.[de 21]

المعالجة بالفرن اللافح

[عدل]

الفرن اللافح [ملاحظة 52] هو نوعٌ من الأفران الصناعية لصهر الفلزّات عموماً والحديد خصوصاً. تُمزَج خامات الحديد الأكسيدية من الهيماتيت (Fe2O3) أو المغنيتيت (Fe3O4) مع فحم الكوك؛ ثم تُدخَل الشحنة إلى الفرن اللافح من الأعلى.[de 21] هناك عدد من الشروط ينبغي توافرها في فحم الكوك المستخدم في لفرن اللافح، منها أن يكون صلباً بشكل كافٍ يمنع التفتت، وأن يكون نقيّاً خالياً من الشوائب مثل الكبريت.[ar 1]

تتعرّض الشحنة أثناء هبوطها إلى تيّارات ساخنة من غاز صناعي مكوّن من مزيج من أحادي أكسيد الكربون والنتروجين، ممّا يؤدّي إلى تسخينها إلى درجات حرارة تتراوح بين 1600 إلى 2200 °س. يُخصَّص ذلك الغاز الصناعي في مجال التعدين باسم «غاز الفرن اللافح» [ملاحظة 53]؛ وهو ينشأ من نفث تيّارات من الهواء المُسخّن مسبقاً أسفل الفرن إلى درجة حرارة مقدارها 900 °س إلى المزيج، وذلك بكمّيّات كافية لتلفح الكربون وتحوّله إلى أحادي أكسيد الكربون:[58]

مخطّط مبسّط للفرن اللافح.

في مجال من درجات الحرارة بين 500-900 °س يحدث ما يدعى باسم «الاختزال غير المباشر»؛ وهو تفاعل اختزال بين أكاسيد الحديد المختلفة وأحادي أكسيد الكربون، وهو يسير وفق ثلاث مراحل إلى الوصول إلى عنصر الحديد الفلزّي:[de 21]

أمّا في مجال من درجات الحرارة يقع بين 900-1600 °س فيحدث ما يدعى باسم «الاختزال المباشر»، إذ يختزل فحم الكوك أكاسيد الحديد مياشرةً إلى الحديد:[de 21]

كما يستطيع فحم الكوك أن يختزل خام الحديد الموجود على تماسٍ معه في المناطق السفلية من الفرن اللافح مباشرةً إلى الحديد الفلزّي:[58]

صورة مقرّبة للحديد الخام، المعروف أيضاً باسم الحديد الغُفْل.

تضاف صهارة من الحجر الجيري (كربونات الكالسيوم) أو الدولوميت (كربونات المغنيسيوم والكالسيوم) إلى الوسط، وهو عامل يساعد على التنقية والتنظيف ويساهم في التسهيل من الجريان)، ويساهم في إزالة المعادن السيليكاتية من الخامة، وإلّا فإنّها قد تتسبّب في انسداد فتحات الفرن. يساعد ارتفاع درجة حرارة الفرن على التفكّك الحراري للكربونات إلى أكسيد الكالسيوم، والذي يتفاعل بدوره مع السيليكا الفائضة ليشكّل ما يعرف باسم «الخَبَث» [ملاحظة 54]، والذي يتألّف بشكلٍ كبيرٍ من سيليكات الكالسيوم، بالإضافة إلى مكوّنات أخرى.[de 22] تكون درجات الحرارة السائدة في الفرن مرتفعة، بحيث يكون كلٌ من الحديد والخبث في حالة منصهرة، واللذان يُجمعان أسفل الفرن، ولكنّهما يكونان غير ممتزجَين، إذ أنّ كثافة مصهور الخَبَث أقلّ من كثافة مصهور الحديد، لذا تبقى طبقة الخبث على السطح، ممّا يسهّل من فصلها فيما بعد.[58] تُروى طبقة الخبث بالماء، ممّا يؤدّي إلى تَزَجُّجِهَا على شكل حُبَيبات دقيقة مثل الرمل. يمكن أن يُستخدَم الخَبَث المُستَحصل في إنشاء الطرقات، كما يضاف إلى الخرسانة؛ بالإضافة إلى استخدامه في مجال الزراعة من أجل تحسين خواص التربة الفقيرة بالمعادن.

يدعى الحديد الخام الناتج عن هذه المرحلة باسم «الحديد الغُفْل»؛ وهو يحوي وسطياً على 95% حديد، مع وجود كمَيَة مرتفعة نسبياً من الكربون تتراوح بين 4–5% وزناً، بالإضافة إلى وجود شوائب من عناصر مختلفة مثل الكبريت (0.01-0.05%) والمنغنيز (0.5-6%) والسيليكون (0.5-3%) والفوسفور (إلى 2%).[de 21]

صناعة الفولاذ

[عدل]

غالباً ما يُستخدَم الحديد الخام (الحديد الغُفْل) الناتج من الفرن اللافح في إنتاج الفولاذ في مصانع الحديد. عند إزالة الشوائب من الحديد الغُفْل والإبقاء على محتوى كربوني يتراوح بين 2–4% يُستحصَل على ما يسمّى «الحديد الزهر» (أو «الحديد الصبّ») [ملاحظة 55]؛ كما يمكن أن يُستحصَل على الحديد الزهر المرن؛[de 23] وتُصَبّ تلك الأنواع في المسابك [ملاحظة 56] إلى منتجاتٍ حديديةٍ مختلفةٍ.[58]

يؤدّي ارتفاع محتوى الكربون إلى خواص غير محمودة للحديد مثل الهشاشة والتقصّف، لذلك يُعمَد إلى تخفيض محتوى الكربون في الحديد إلى حدٍّ أعظميٍّ مقداره 2%، وبالتالي يُستحصَل على سبيكة الفولاذ (والتي تدعى سبيكة «الصُلْب» في بعض الدول العربية مثل جمهورية مصر العربية). في حين أنّ تخفيض محتوى الكربون دون 0.5% يؤدّي إلى الحصول على ما يعرف باسم «الحديد المطاوع».[de 24] يمكن أن يُستخدَم الفولاذ الناتج عن العملية في صناعة المشغولات الحديدية المعدنية المختلفة عبر خضوعه إلى طيفٍ واسعٍ من المعالجات الهندسية، مثل التشكيل على البارد [ملاحظة 57] أو الدَرْفَلة والتصفيح على الساخن [ملاحظة 58] أو التطريق [ملاحظة 59] أو التشغيل الآلي والمَكْنَنَة [ملاحظة 60] وغيرها. تخضع منتجات الفولاذ إلى معالجات حرارية مختلفة بعد تطريقها إلى الأشكال المرغوبة. يساهم التلدين (أو التخمير) [ملاحظة 61]، وهو عملية تسخين الفولاذ إلى درجات حرارة بين 700–800 °س ثم بالتبريد البطيء التدريجي، في جعل الفولاذ أكثر ليونة وأكثر قابلية للتشغيل.[59]

اختزال الحديد المباشر

[عدل]

يمكن إجراء عملية الاختزال المباشر لخامات الحديد من أجل الحصول على الحديد، والذي يدعى حينها باسم «الحديد الإسفنجي» [ملاحظة 62]. يسود وفق هذه العملية تفاعلان كيميائيان، يتضمّن الأوّل الأكسدة الجزئية الغاز الطبيعي عند درجات حرارة مرتفعة وبوجود حفّاز:

ثم يعالج خام الحديد بالغازات الناتجة عن التفاعل الأول داخل الفرن، ممّا يؤدّي إلى الحصول على كتلة إسفنجية من الحديد الصلب.

ووفق هذا الأسلوب تزال السيليكا من الوسط باستخدام صهارة من الحجر الجيري.

عمليات أخرى

[عدل]
مسحوق حديد

يمكن اختزال خام الحديد وفق تفاعل الثرميت بمزج مسحوق أكسيد الحديد مع مسحوق من فلز الألومنيوم، كما هو موضّح بالتفاعل الكيميائي التالي:

لا يمكن تطبيق هذه الطريقة من أجل استحصال الحديد من خاماته الأكسيدية، إذ لا يعدّ هذا الأسلوب اقتصادياً، لأنّ كمّيّة الألومنيوم اللازمة لإجراء هذا التفاعل ستكون كبيرة. ولكن يستخدم هذا التفاعل على نطاق صغير نسبياً من أجل لحام خطوط السكك الحديدية.

توجد هناك عمليّات تقليدية عديدة ومختلفة للحصول على الحديد والفولاذ، مثل ورشات الحديد الممتاز أو أفران التسويط أو أفران بسمر أو أفران المجمّرة المكشوفة [ملاحظة 63] أو وفق عملية توماس [ملاحظة 64]. كما توجد أيضاً عمليات حديثة بديلة عن الفرن اللافح مثل إنتاج الحديد ضمن الأفران الأكسجينية القاعدية [ملاحظة 65] أو أفران القوس الكهربائي.[58] يُستحصَل على الحديد أيضاً في الأفران القائمة [ملاحظة 66] وفق عملية كوريكس [ملاحظة 67] على سبيل المثال، والمطوّرة من شركة سيمنز.[60]

يمكن الحصول على الحديد النقي مخبرياً بكمّيّات صغيرة من اختزال الأكسيد أو الهيدروكسيد النقيّ باستخدام الهيدروجين؛ أو بتشكيل خماسي كربونيل الحديد ثم تسخينه إلى درجة حرارة مقدارها 250 °س ليتفكّك إلى مسحوق حديد نقيّ.[50] يمكن بأسلوب آخر الحصول على مسحوق الحديد النقي من إجراء تحليل كهربائي لمحلول كلوريد الحديد الثنائي.[61]

النظائر

[عدل]

للحديد أربع نظائر مستقرّة: حديد-54 54Fe (بوفرةٍ طبيعية 5.845%)؛ وحديد-56 56Fe (بوفرة طبيعية 91.754%)؛ وحديد-57 57Fe (بوفرةٍ طبيعية 2.119%)؛ وحديد-58 58Fe (بوفرةٍ طبيعية 0.282%). بالإضافة إلى وجود أربع وعشرون نظيراً مشعّاً للحديد مع وجود ستّة مُصَاوغات نووية، وجميعها لها أعمار نصف تقع بين 150 نانوثانية و8.275 ساعة.[62] يعدّ النظير حديد-54 من النظائر المستقرّة للحديد، وعلى الرغم من ذلك، فقد لوحظ له اضمحلال إشعاعي على هيئة اضمحلال بيتّا المضاعف، ولكن بعمر نصف طويل، وهو 3.1×1022 سنة، حيث يضمحلّ إلى نظير الكروم 54Cr.[63] يوجد هنالك نظيرٌ شبه مستقرٍّ للحديد وهو النظير حديد-60 60Fe، والذي يبلغ عمر النصف له قرابة 2.6×106 سنة.[64] لكنّه نادر الوجود في الكون، وهو نظير منقرض في الأرض؛ ولكن ناتج اضمحلاله الإشعاعي متوفّر في الأرض على هيئة نظير النيكل 60Ni.[63]

ركّزت الأبحاث الأوّلية المهتمّة بالتركيب النظائري للحديد على التخليق النووي للحديد-60 60Fe من خلال دراسة الأحجار النيزكية وتشكّل الخامات الأرضية.[65] ولكن التطوّر في مجال مطيافية الكتلة سمح في التحليل النوعي والكمّي الدقيق للتفاوت الطفيف في نسب النظائر المستقرّة للحديد.[66] تُستخدَم النسبة بين النظيرَين حديد-60 60Fe وناتج اضمحلاله نيكل-60 sup>60Ni في دراسة تشكّل وتطوّر المجموعة الشمسية. هناك اقتراحات تفترض أنّ الطاقة المتحرّرة عن اضمحلال النظيرَين حديد-60 60Fe وألومنيوم-26 26Al كانت قد ساهمت في إعادة صهر وتباين الكويكبات بعد تشكّلها قبل قرابة 4.6 بليون سنة.[67] في جانبٍ آخر، يهتمّ الباحثون أيضاً بدراسة أكثر نظائر الحديد وفرةً، وهو النظير حديد-56 56Fe، لأنّه يمثّل أكثر نواتج التخليق النووي شيوعاً.[68] يُنتَج النظير نيكل-56 56Ni بسهولةٍ من النوى الأخفّ بتفاعلات نووية وفق عملية ألفا؛ مثلما يحدث في عملية احتراق السيليكون ضمن المستعرات العظمى من النوع 2 [ملاحظة 68]. تتطلّب عملية إضافة جسيم ألفا إضافي إلى نواة النيكل-60 كي يتحوّل إلى نظير الزنك 60Zn طاقةً كبيرةً جدّاً، لذلك تقف تفاعلات عملية ألفا عند هذا النظير، والذي له عمر نصف يبلغ ستة أيام، لكنه سرعان ما يخضع ضمن بقايا المستعر الأعظم إلى تفاعلات انبعاث بوزيتروني، ليتحوّل أوّلاً إلى نظير الكوبالت المشعّ 56Co، ومنه إلى نظير الحديد المستقرّ 56Fe. لذلك فإنّ الحديد هو العنصر الأكثر شيوعاً داخل نواة النجوم الحمراء العملاقة، وفي تركيب النيازك الحديدية والكواكب مثل الأرض.[69] على الرغم من أنّه نظرباً قد يُستحصَل على جانب أكبر من الطاقة في حال تشكيل نظير النيكل 62Ni داخل النجوم، إلّا أنّ الظروف داخل تلك النجوم المستعرة تفضّل تشكيل الحديد على النيكل؛[70] كما يتطلّب تشكيل العناصر الأثقل من الحديد عمليات التقاط النيوترون سريعة؛[69] لذلك فإنّ الحديد يصنّف ضمن أكثر العناصر الكيميائية وفرةً في الكون.[71][72]

الخواص الفيزيائية

[عدل]
مخطّط يظهر طاقة الارتباط بالنسبة إلى عدد النُوَيّات في نوى نظائر العناصر المختلفة، ويلاحظ وقوع نظير الحديد-56 بالقرب من المستوى الأعظمي.

يوجد الحديد في الشروط القياسية من الضغط ودرجة الحرارة على هيئة فلزّ ذي لون رمادي فضّي؛ وهو في الحالة النقيّة فلز ليّن نسبياً وقابل للسحب والطرق. تبلغ كثافة الحديد 7.873  غ/سم3؛ وينصهر عند 1538 °س، ويغلي عند 3070  °س.[de 21] تعدّ نقطتا انصهار وغليان الحديد، بالإضافة إلى حرارة التَذْرير [ملاحظة 69]، ذات قيم أخفض من قيم أغلب عناصر الفلزّات الانتقالية الموجودة على يسار الحديد في الجدول الدوري ما عدا المنغنيز، وذلك من السكانديوم إلى الكروم؛ وذلك يعكس مساهمة أقلّ للإلكترونات في المستوى الفرعي 3d في تكوين الرابطة الفلزّية.[73]

تبدي نواة ذرّة نظير الحديد 56Fe مقداراً كبيراً نسبياً من نقص الكتلة، وبالتالي تكون قيمة طاقة الارتباط لكل نُوَيّة مرتفعة، ممّا يعكس الاستقرار النسبي له؛ ولذلك يمثّل هذا النظير نهاية سلسلة توليد الطاقة في النجوم أثناء التخليق النووي. يعدّ مقدار نقص الكتلة بالنسبة للنظير حديد-56 56Fe الثالث من حيث الترتيب بالنسبة لنظائر العناصر الكيميائية، وذلك بعد نظير النيكل 62Ni ونظير الحديد الآخر 58Fe.[63][68]

يعطي الحديد خطوط طيفية في مختلف مجالات قياس الضوء الطيفي؛[de 25] وللكشف عن تلك الخطوط أهميّة كبيرة في مجال علم فلك الأشعّة السينية، إذ أنّ الخطوط الطيفية القويّة للحديد تعطي دلائل كونية مثل وجود نواة مِِجَرّية نشطة أو ثنائي الأشعّة السينية أو مستعر أعظم أو ثقب أسود.[de 26]

التآصل في الحديد

[عدل]
مخطّط أطوار الحديد عند الضغوط العادية إلى المتوسّطة.

يظهر الحديد خاصّة التآصل، وهي ظاهرة تتمثّل بتشابه التركيب الكيميائي مع اختلاف الشكل البلّوري، نتيجةً لاختلاف توزيع الذرّات في البنية البلّورية. يوجد الحديد عند الضغوط العادية إلى المتوسّطة في ثلاثة أطوار تآصلية، وهي مُرَمّزة بالأحرف الإغريقية ألفا (α-Fe)، وغامّا (γ-Fe)، ودلتا (δ-Fe). عندما يتبرّد مصهور الحديد دون نقطة تجمّده (1538 °س) فإنّه يتبلور إلى المتآصل دلتا (δ-Fe)، والذي يمتلك بنية بلّورية ذات نمط مكعّب مركزي الجسم [ملاحظة 70]؛ وعندما يترك ليبرد لدرجات حرارة دون 1394 °س فإنه يغيّر من شكله البلّوري إلى المتآصل غامّا (γ-Fe)، والذي يمتلك بنية بلّورية ذات نمط مكعّب مركزي الوجه [ملاحظة 71] (تبلغ قيمة ثابت الشبكة البلّورية مقدار 364.7 بيكومتر)؛ ويعرف ذلك الطور أيضاً بالاسم «أوستنيت». [ملاحظة 72] عند درجات حرارة دون 910  °س تعود البنية البلّورية للحديد لتأخذ الشكل البلّوري المكعّب مركزي الجسم (تبلغ قيمة ثابت الشبكة البلّورية مقدار 286.6 بيكومتر)، ويُرمز للحديد حينها بالمتآصل ألفا (α-Fe)، ويُعرف ذلك الطور أيضاً بالاسم «فيريت».[ملاحظة 73].[58][74][75] يكون الحديد من النمط ألفا (α) طريّاً نسبياً، وهو قادر على إذابة كمّيّة صغيرة من الكربون فيه، بنسبة عظمى تصل إلى 0.021% وزناً عند درجة حرارة مقدارها 910  °س.[76] أمّا الأوستنيت (النمط غامّا (γ)) فهو طري أيضاً بشكلٍ مشابه، ولكنّه قادر على إذابة كمّيّة أكبر من الكربون تصل إلى 2.04% وزناً عند درجة حرارة مقدارها 1146  °س. يُستخدَم هذا النمط من الحديد في إنتاج الفولاذ المقاوم للصدأ المستخدم في صناعة الأواني وتجهيزات المطاعم والمشافي.[77]

تتغيّر الخواص الفيزيائية للحديد عند قيم مرتفعة جدّاً من الضغط ودرجة الحرارة،[78][79] وذلك بشكلٍ مُحَاكٍ للظروف في جوف الأرض.[80] عندها تتغيّر البنية البلّورية من المتآصل ألفا (α-Fe) إلى بنية ذات تعبئة متراصّة، يُرمَز لها بالحرف إبسلون (ε-Fe).[81] توجد بعض النظريات التي تشير إلى وجود طور مستقرّ يُرمَز له بيتّا (β)، والذي يسود عند ضغوط مرتفعة تفوق 50 غيغاباسكال وعند درجات حرارة تتجاوز 1500 كلفن، وتأخذ فيها البنية شكل نظام بلوري معيني قائم؛[82] إلا أن تلك النظريات خلافية، ولا يوجد إجماع علمي عليها، خاصّةً أنّ الرمز β يُستخدَم في بعض الأحيان للإشارة إلى تغيّر الخواص المغناطيسية للحديد فوق درجة حرارة كوري.[74]

الخواص المغناطيسية

[عدل]
مُنحَنيات المغنطة لتسع مواد ذات مغناطيسية حديدية 1.  صفيحة فولاذية؛ 2.  فولاذ كهربائي (سيليكوني)؛ 3.  فولاذ البوتقة؛ 4.  فولاذ التنغستن؛ 5.  فولاذ المغانط؛ 6.  حديد الصب (الزهر) 7.  نيكل؛ 8.  كوبالت؛ 9.  مغنيتيت.[83]

في مجالٍ من درجات الحرارة دون درجة حرارة كوري [ملاحظة 74]، والتي تبلغ 770 °س، تتغيّر خواص الحديد ألفا (α-Fe) المغناطيسية من مغناطيسية مسايرة [ملاحظة 75] إلى مغناطيسية حديدية [ملاحظة 76]، وذلك يعود إلى تغيّر اللفّ المغزلي [ملاحظة 77] للإلكترونَين غير المتزَاوِجَين في كلّ ذرّة واصطفافه بشكلٍ مماثلٍ للفِّ المغزلي للجوار، ممّا يؤدّي إلى تشكّل حقل مغناطيسي سطحي.[84][ar 2] وفي غياب حقل مغناطيسي خارجي يكون التوجّه في حيّزٍ مغناطيسي [ملاحظة 78] ذي سماكة مقدارها 10 ميكرومتر.[77] ما يدعم حدوث هذه الظاهرة أنّ هَذَين الإلكترونَين (dz2 و dx2y2) لا يتّجهان نحو باقي الذرّات المجاورة في الشبكة البلّورية، وبذلك فإنّهما غير مُنْخَرطان في تشكيل الرابطة الفلزّية.[74] إلّا أنّ تأثير ذلك الحقل المغناطيسي الداخلي يكون مقصوراً على الطبقة السطحية، إذ أنّ تنوّع التوجّهات يجعل المحصّلة الإجمالية للحقل المغناطيسي لقطعة الحديد بالكامل معدومةً. يؤدّي تطبيق حقلٍ مغناطيسيٍّ خارجيٍّ إلى التأثير على الحيّز المغناطيسي السطحي، ويوجّهه في نفس اتجاه الحقل المغناطيسي الخارجي، ممّا يؤدّي إلى تعزيزه على حساب الذرّات ذات التوجّه المختلف. تُستَغل هذه الظاهرة في الأجهزة التي تتطلّب نقل الحقل المغناطيسي من مؤثّرٍ خارجيٍّ، مثل المحوّلات الكهربائية وأجهزة التخزين المغناطيسي والمحرّكات الكهربائية. يؤدّي وجود شوائب أو عيوب بلّورية أو حدود حُبَيبيّة داخل البنية إلى التأثير على توجّه الذرّات داخل الحيّز المغناطيسي، ويجعله ثابتاً، ممّا يؤدّي إلى استمرار التوجّه المنتظم حتّى بعد زوال الحقل المغناطيسي الخارجي، وذلك بالتالي يمكّن من الحصول على مغناطيس دائم.[84]

يوجد سلوك مغناطيسي مشابه لبعض مركّبات الحديد ومعادنه، مثلما هو الحال في معادن الفرّيت، ومن ضمنها معدن المغنيتيت. كانت قطع من المغنيتيت مستخدمةً على هيئة حجر المغناطيس في تركيب الأشكال الأوّلية من البوصلة في مجال الملاحة البحرية؛ ثم استخدمت على نطاقٍ واسعٍ في وسائط تخزين البيانات المعتمدة على المغْنطة، مثل ذواكر الحاسوب والأشرطة المغناطيسية والأقراص المرنة والصلبة، وذلك قبل أن تحلّ محلّها مواد مصنّعة من الكوبالت.[85]

الخواص الهندسية

[عدل]

تُفيّّم الخواص الهندسية للحديد وسبائكه باستخدام مجموعةٍ متنوّعةٍ من الاختبارات، مثل اختبار برينل واختبار روكويل وكلاهما لقياس صلادة الحديد، واختبار قوة الشد وغيرها؛ نتائج هذه الاختبارات على الحديد دقيقةٌ للغاية، بما يسمح باستخدام الحديد لمعايرة أو الربط بين نتائج الاختبارات المختلفة.[86] تعتمد نتائج تلك الاختبارات على درجة نقاء الحديد: فبلّورات الحديد في صورته النقية أكثر ليونةً من الألومنيوم، ومع إضافة بعض أجزاء من المليون من وزن سبيكة الحديد من عنصر الكربون، فإنّها تضاعف من قوّة الحديد.[87] تزداد الصلادة ومقاومة الشد [ملاحظة 79] عند زيادة محتوى الكربون في سبيكة الحديد حتّى تصل نسبته إلى 0.2% من وزن السبيكة، وبعد ذلك يتزايد بمعدّلات أقلّ، ويصل إلى الذروة عندما يصل محتوى الكربون إلى 0.6% تقريبا من وزن السبيكة.[88] الحديد النقي المنتَج صناعياً (قرابة 99.99%) لديه صلادة تقدّر بـ 20-30 وفق اختبار برينل للصلادة.[89]

السبائك

[عدل]

توجد أشكال عديدة لسبائك الحديد الكربونية، أشهرها:

مخطّط أطوار الحديد والكربون
  • الحديد الغُفْل؛ وهو يحوي على نسبةٍ من الكربون تتراوح بين 4-5%، مع وجود شوائبٍ من عناصر مثل الكبريت والفوسفور والسيليكون. وهو ناتج وسطي أثناء إنتاج الحديد الزهر (حديد الصبّ) والفولاذ.[de 21] لسبيكة حديد الغُفْل نقطة انصهار تقع في المجال بين 1420–1470 كلفن، وهي بذلك أخفض من المكوّنَين الرئيسيَّين لها، ممّا يجعلها المنتَج الأوّل القابل للصهر عند تسخين الحديد والكربون (الفحم) مع بعضهما.[74]
  • حديد الزّهْر (أو حديد الصبّ)؛ ويحوي على نسبةٍ من الكربون تتجاوز 2.06%، مع وجود عناصر أخرى في السبيكة، مثل السيليكون والمنغنيز، والتي يؤدّي وجودها إلى تحسين قابلية السبك [ملاحظة 80]. إنّ حديد الزهر صلدٌ جدّاً وقابل للتقصّف؛ وهو ليس سهل التطريق، ولكنه سهل السبك والصبّ.[de 27] يحوي «الحديد الزهر الأبيض» [ملاحظة 81] على الكربون في هيئة «السمنتيت» [ملاحظة 82]، وهو كربيد الحديد Fe3C.[90] وهو مركّبٌ صلدٌ وهشٌّ في ذات الوقت، وهو يهيمن على الخواص الهندسية لهذه السبيكة. بالمقابل، يؤدّي التبريد البطيء لمزيجٍ من الحديد مع 0.8% كربون من درجات حرارة دون 723 °س إلى درجة حرارة الغرفة إلى الحصول على طبقاتٍ منفصلةٍ ومتناوبةٍ من السيمنتيت والحديد ألفا، وهو نمطٌ طريٌّ ومطواع، ويدعى «البرليت» [ملاحظة 83]. من جهةٍ أخرى، لا يتيح التبريد السريع المجال لحدوث ذلك النمط من الانفصال في الطبقات، بل يشكّل نمطاً يدعى باسم «مارتنسيت» [ملاحظة 84]، وهو نمطٌ صلبٌ وهشٌّ. يمكن معالجة الأنماط المذكورة بإعادة صهرها، وتغيير النسب بين البرليت والمارتنسيت من أجل الحصول على مزائج وفق الطلب.[90] أمّا «الحديد الزهر الرمادي» [ملاحظة 85] فيوجد فيه الكربون على هيئة ألواح دقيقة ومنفصلة من الغرافيت، ممّا يجعل هذه المادة هشّةً أيضاً، وذلك لأن الأطراف الصلبة والحادّة للغرافيت المسبّبة لوجود مواقع مرتفعة تركيز الإجهاد [ملاحظة 86] داخل بنية المادّة.[91] يمكن تحوير الحديد الزهر الرمادي إلى نمطٍ مستحدَثٍ يدعى «الحديد الزهر المرن» [ملاحظة 87]، والذي يعالَج بكمّيّات نزرة من المغنيسيوم من أجل تغيير شكل الغرافيت إلى عُقَيدات، ممّا يقلّل بذلك من تركيز الإجهاد، ويزيد بشكلٍ كبيرٍ من شدّة ومتانة السبيكة.[91]
  • الحديد المطاوع؛ ويحوي على نسبةٍ ضئيلةٍ من الكربون أقلّ من 0.25%، ولكنّه بالمقابل يحوي على كمّيّةٍ كبيرةٍ من الخَبَث، الأمر الذي يمنحه بنيةً ليفيةً مميّزةً.[92] سبيكة الحديد المطاوع متينة وقابلة للسحب والطرق؛ وهو أكثر مقاومة للتآكل من الفولاذ العادي؛ ولكن بالرغم من ذلك فقد حلّ الفولاذ الكربوني [ملاحظة 88] مكان الحديد المطاوع في استخداماته النمطية؛ وهو يحوي على نسبةٍ من الكربون أقلّ من 2.0%؛ مع وجود نسبةٍ صغيرةٍ من الشوائب مثل المنغنيز والكبريت والفوسفور والسيليكون.[93]
  • الفولاذ (أو الصُلْب)؛ وهو يحوي على نسبةٍ عظمى من الكربون تصل إلى 2.06%؛ وهو قابل بسهولة للتطريق على العكس من حديد الزهر. يعدّ الفولاذ أكثر سبائك الحديد تميّزاً من ناحية الخواص، وخاصّةً عند إجراء المعالجات الملائمة، الحرارية منها مثل التقسية [ملاحظة 89]، أو الآلية مثل الدَرْفلة [ملاحظة 90].[de 21] يحوي الفولاذ السبائكي [ملاحظة 91] على كمّيّات متفاوتةٍ من الكربون وكذلك من فلزّات أخرى مثل الكروم والفاناديوم والموليبدنوم والنيكل وغيرها. على الرغم من شيوع استخدام سبيكة الفولاذ المقاوم للصدأ، إلّا أنّ أغلب أنواع الفولاذ السبائكي الأخرى هي مرتفعة الكلفة، وغالباً ما تُستخدَم من أجل تطبيقات مخصّصة، مثلما هو الحال في سبائك «فولاذ HSLA» مرتفعة المتانة ومنخفضة محتوى العناصر في السبيكة.[ملاحظة 92].[94]

الخواص الكيميائية

[عدل]
حالة الأكسدة مثال على مركّب نمطي لحالة الأكسدة المذكورة
−2 (d10) حديدات رباعي كربونيل ثنائي الصوديوم (كاشف كولمان) Na2[Fe(CO)4]
−1 (d9) أنيون ثماني كربونيل ثنائي الحديد 2−[Fe2(CO)8]
0 (d8) خماسي كربونيل الحديد Fe(CO)5
1 (d7) مضاعف ثنائي كربونيل حلقي بنتاديينيل الحديد 2[C5H5Fe(CO)2]
2 (d6) كبريتات الحديد الثنائي FeSO4؛ فروسين Fe(C5H5)2
3 (d5) كلوريد الحديد الثلاثي FeCl3؛ أكسيد الحديد الثلاثي Fe2O3
4 (d4) أوكسي رباعي فلوروبورات الحديد الرباعي FeO(BF4)2
5 (d3) أنيون أكسيد الحديد الخماسي 3−FeO4
6 (d2) حديدات البوتاسيوم K2FeO4

يبدي الحديد الخواص الكيميائية النمطية للفلزّات الانتقالية، مثل القدرة على الوجود بعدّة حالات أكسدة تختلف فيما بينها بمقدار درجة واحدة، بالإضافة إلى القدرة على تشكيل معقّدات تناسقية؛ ويتمثّل ذلك باكتشاف مركّب الفروسين، والذي أدّى إلى حصول ثورة في مجال الكيمياء العضوية الفلزّية منذ خمسينيات القرن العشرين.[95]

الحديد ذو تفاعلية كيميائية جيّدة، وهو الأنشط في مجموعته؛ وهو تلقائي الاشتعال عندما يكون على هيئة مسحوقٍ دقيقٍ جدّاً؛ كما يذوب بسهولة في الأحماض الممدّدة ليعطي أيونات الحديدوز 2+Fe وانطلاق غاز الهيدروجين:[de 21]

ولكنه لا يتفاعل مع حمض النتريك المركّز، وباقي الأحماض المؤكسدة، نتيجة لتشكل طبقة أكسيد حامية، ولكنّها بدورها تتفاعل مع حمض الهيدروكلوريك.[74] يتأكسد الحديد في الهواء الرطب وفي الماء بسهولة، ويشكّل طبقةً من أكسيد هيدروكسيد الحديد الثلاثي المُمَيَّهَة، والتي تعرف بالاسم الشائع «صدأ». إنّ طبقة الصَدَأ مسامية وطريّة، لذلك فإنّها قابلة للانتشار لتغطّي كافّة جسم الحديد المتأكسد؛ وخاصّةً في ماء البحر أو المياه الحاوية على ثنائي أكسيد الكبريت. عند تسخين الحديد في الهواء الجافّ تتشكّل طبقةٌ من أكسيد الحديد الثنائي والثلاثي Fe3O4. على العكس من باقي أغلب الفلزّات لا يستطيع الحديد أن يشكّل ملغمة مع الزئبق؛ ولذلك فإنّه من الشائع استخدام حاويات من الحديد لتخزين الزئبق.[96]

كيمياء المحاليل

[عدل]
مخطّط بوربيه [ملاحظة 93] للحديد

يختلف جهد اختزال أيونات الحديد في المحاليل حسب حالة الأكسدة. فيما يلي قيم جهد الاختزال لأيونات الحديد الشائعة في الوسط الحمضي:[74]

Fe2+ + 2 e is in equilibrium with Fe E0 = −0.447 V
Fe3+ + 3 e is in equilibrium with Fe E0 = −0.037 V
FeO42- + 8 H+ + 3 e is in equilibrium with Fe3+ + 4 H2O E0 = +2.20 V

يعدّ أنيون الحديدات (أو الفِرّات) مثالاً على وجود الحديد بحالة الأكسدة +6، ويوجد هذا الأنيون في المحلول بلون أحمر قرمزي، وهو ذو بنية رباعية السطوح، وينتمي إلى المؤكسدات القويّة، إذ يستطيع أن يؤكسد النتروجين والأمونيا عند درجة حرارة الغرفة، وحتى كذلك الماء في الأوساط المعتدلة أو الحمضية.[97]

عادةً ما يكون أيون الحديد الثلاثي 3+Fe في المحاليل على هيئة سداسي هيدرات 3+[Fe(H2O)6]، ويتغيّر موقع الرُبَيطات في كرة التناسق مع تغيّر pH الوسط مع تحرّر أيونات الهيدرونيوم، وذلك من الأيون 3+[Fe(H2O)6] إلى الأيون 2+[Fe(H2O)5(OH)]؛ ثم إلى الأيون +[Fe(H2O)4(OH)2]؛ كما يتشكّل الأيون 2+4[Fe(H2O)4(OH)] أيضاً في تفاعلات التوازن الكيميائي تلك.[98]

بالمقابل، لا يدخل أيون الحديد الثنائي سداسي الهيدرات 2+[Fe(H2O)6] ذو اللون الأخضر الشاحب في تفاعلاتٍ مماثلة، بالتالي لا يكون الوسط في أيونات الحديد الثنائي حمضياً، إذ عند إضافة أنيون الكربونات لا يتحرّر ثنائي أكسيد الكربون، ولكن تحدث عملية ترسيب لمركّب كربونات الحديد الثنائي FeCO3. بوجود زيادةٍ من ثنائي أكسيد الكربون يمكن لمركّب البيكربونات أن يتشكل، وتحدث هذه الظاهرة بشكلٍ شائعٍ في المياه الجوفية، ولكن سرعان ما يتأكسد الحديد الثنائي إلى الثلاثي ويترسّب أكسيد الحديد Fe2O3 من الوسط.[99]

المركبات الكيميائية

[عدل]
أكسيد الحديد الثنائي FeO (أكسيد الحديدوز)
أكسيد الحديد الثلاثي Fe2O3 (أكسيد الحديديك)
أكسيد الحديد الثنائي والثلاثي Fe3O4 (أكسيد الحديد المغناطيسي)

تحوي ذرّة الحديد على 24 إلكتروناً، والتي تترتّب وفق التوزيع الإلكتروني Ar;3d64s2، وتكون طاقة الإلكترونات 3d و 4s متقاربة، ممّا يمكّن من حدوث تأيّن عددٍ مختلفٍ من الإلكترونات.[90] بالرغم من ذلك، فللحديد حالتا أكسدة مفضّلتان عن غيرهما، وهما +2 و+3؛ وهما السائدتان في مركّباته اللاعضوية، ففي حالة الأكسدة +2 يشكّل الحديد مركّبات الحديدوز، وفي حالة الأكسدة +3 يشكل مركّبات الحديديك. يعدّ الحديد الرباعي شائعاً في المركّبات الوسطية في عددٍ من تفاعلات الأكسدة الكيميائية الحيوية.[de 21][100] من جهةٍ أخرى، يستطيع الحديد أيضاً أن يشكّل مركّبات كيميائية بحالات أكسدة عليا، مثل حالة الأكسدة +6 في مركّب حديدات البوتاسيوم [ملاحظة 94] القرمزي K2FeO4؛ أمّا حالات الأكسدة الأعلى من ذلك فهناك خلافٌ على حقيقة وجودها.[101] هناك عددٌ من مركّبات الحديد العضوية، والتي تتراوح فيها حالة أكسدة الحديد بين +1 أو 0 أو −1 أو حتى −2. غالباً ما تُحدَّد حالة أكسدة الحديد والعدد التناسقي وخواص ارتباطه الكيميائي وفق تقنية مطيافية موسباور.[102] يوجد عددٌ من المركّبات مختلطة التكافؤ [ملاحظة 95] والحاوية على مراكز من الحديد الثنائي والثلاثي، مثلما هو الحال في المغنيتيت أو خضاب أزرق بروسيا Fe4[Fe(CN)6]3،[de 21] والذي كان شائع الاستخدام سابقاً في الطبعات الزرقاء.[103]

اللاعضوية

[عدل]
الأكاسيد والهيدروكسيد

يشكّل الحديد عدداً من أكاسيد الحديد المختلفة، أكثرها شيوعاً أكسيد الحديد الثنائي FeO (أكسيد الحديدوز)، وأكسيد الحديد الثلاثي Fe2O3 (أكسيد الحديديك)، وأكسيد الحديد الثنائي والثلاثي Fe3O4 (أكسيد الحديد المغناطيسي)؛ مع وجود عددٍ من صيغ الأكاسيد غير المتكافئة.[104] من الممكن تحضير أكسيد الحديدوز؛ إذ يُستحصَل من التحلل الكيميائي لمركّب أكسالات الحديد الثنائي FeC2O4، وهو مركّب ذو لون أسود، لكنّه غير مستقرّ عند درجة حرارة الغرفة، إذ من السهل عليه أن يتأكسد. أمّا أكسيد الحديديك فهو مسحوقٌ بلّوريٌّ ذو لون أحمر إلى بنّي، ويتكوّن عند أكسدة الحديد بوجود كمّيّة كافية من الأكسجين، وهو يوجد طبيعياً على هيئة معدَني الهيماتيت والمغهيميت.[ملاحظة 96] يحوي أكسيد الحديد الثنائي والثلاثي على الحديد في حالتي الأكسدة +2 و +3، وهو يتكوّن طبيعياً من النشاط البركاني في الأرض، وذلك على هيئة معدن المغنيتيت. كما يمكن أن يتشكّل عند حرق الحديد بشكلٍ مباشر. تعدّ الأكاسيد المذكورة الأكاسيد الرئيسية في إنتاج الحديد، مثلما يحدث في أفران الحديد الخالص أو الأفران اللافحة؛ كما تُستخدَم في إنتاج مواد الفرّيت ووسائط التخزين المغناطيسي وفي مجال الخُضُب. يمكن الحصول أيضاً أكسيد الحديد الرباعي FeO2، وهو أكسيد غير شائع للحديد.[105] لا تعدّ طبقة الأكسيد في الحديد مُخَمّلةَ، وذلك على العكس من الألومنيوم أو الكروم، وذلك لكونها مسامية، وهي قادرةٌ على إبطاء عملية الأكسدة، ولكنها لا تمنع من تأكسد الحديد بالكامل؛ ولذلك فإنّ عملية تزريق الفولاذ [ملاحظة 97]، والتي تتضمّن تخميلاً جزئياً للفولاذ بتغطيته بطبقة من الأكسيد، لا تصون الحديد من التآكل.[de 28]

ينتمي أكسيد هيدروكسيد الحديد الثلاثي FeO(OH) إلى مجموعة الهيدروكسيدات، والذي يمكن أن يصنّف ضمن هيدرات أكسيد الحديد الثلاثي. يوجد هذا المركّب في الطبيعة على شكلَين، الأوّل هو الشكل ألفا في معدن الغوتيت؛ والثاني هو الشكل غامّا في معدن ليبيدوكروكيت [ملاحظة 98]. يمكن أن يتفاوت التركيب حسب درجة التَمَيُّه [ملاحظة 99] في أكسيد هيدروكسيد الحديد الثلاثي، والذي يتحوّل عند التسخين إلى أكسيد الحديد الثلاثي.[de 29]

الكبريتيدات

يوجد مركب كبريتيد الحديد الثنائي في الطبيعة على هيئة معدن البيريت؛[ملاحظة 100]، والذي يعرف بالاسم الشائع الذهب الكاذب أو ذهب المغفّلين، وذلك بسبب بريقه ولمعانه الشبيه ببريق الذهب.[de 21] للمركّب الصيغة الكيميائية FeS2 وهو متعدّد كبريتيد يحوي على أيونات 2+Fe و2-S2 مرتّبة وفق بنية بلّورية مشوّهة على نمط بنية كلوريد الصوديوم.[104]

الهاليدات

تعدّ هاليدات الحديد الثنائي والثلاثي من المركّبات الكيميائية المعروفة. يُستحصَل على هاليدات الحديدوز المميّهة FeX2 (FeF2 وFeCl2 وFeBr2 وFeI2) بشكلٍ نمطيٍّ من معالجة فلزّ الحديد مع أحماض هاليد الهيدروجين HX الموافقة:[de 21]

كلوريد الحديد الثلاثي سداسي الهيدرات
كبريتات الحديد الثنائي سباعي الهيدرات

أمّا هاليدات الحديديك FeX3 (FeF3 وFeCl3 وFeBr3 وFeI3) فيُستحصَل عليها من التفاعل المباشر بين فلزّ الحديد والهالوجين الموافق:[106]

وأكثر هذه المركّبات شهرةً هو كلوريد الحديد الثلاثي FeCl3؛ والذي يمكن لمحاليله أن تؤكسد النحاس وتذيبه.

يعدّ مركّب يوديد الحديديك حالةً خاصّةً، فهو غير مستقرّ ثرموديناميكياً، وذلك بسبب القوّة المؤكسدة لأيون 3+Fe، وللقوّة الاختزالية المرتفعة لأيون اليوديد I.[106]

بالرغم من ذلك يمكن تحضير هذا المركّب تحت شروطٍ خاصّةٍ، وذلك من تفاعل خماسي كربونيل الحديد مع اليود وأحادي أكسيد الكربون في وسط من الهكسان وبتحفيز ضوئي عند درجة حرارة تبلغ −20 °س، وبمعزل عن الأكسجين والماء.[106] بالمقابل، فإنّ معقّدات يوديد الحديديدك مع بعض القواعد الكيميائية هي مركّبات مستقرّة.[107][108]

الكبريتات

عُرفَ مركّب كبريتات الحديد الثنائي FeSO4 قديماً باسم الزاج الأخضر، وذلك نظراً للونه الأخضر المميّز، وهو عامل مختزل جيّد. من جهةٍ أخرى، تكون محاليل مركّب كبريتات الحديد الثلاثي Fe2(SO4)3 ذات لون أصفر، ولذلك كان يعرف قديماً باسم الزاج الأصفر. لكبريتات الحديد الثلاثي تطبيقاتٍ عديدة، منها استخدامه مرسّخاً لونياً في عمليات الصباغة.

أملاح أخرى

للحديد عددٌ كبيرٌ من الأملاح والمركّبات الكيميائية اللاعضوية، منها على سبيل المثال: النترات (نترات الحديد الثنائي Fe(NO3)2 ونترات الحديد الثلاثي Fe(NO3)3)؛ والفوسفات (فوسفات الحديد الثنائي Fe3(PO4)2 وفوسفات الحديد الثلاثي FePO4). كما يوجد للحديد ملح مزدوج على هيئة كبريتات الأمونيوم والحديد الثنائي NH4)2Fe(SO4)2.6H2O)، والمعروف باسم «ملح مور»، وهو كاشف كيميائي مهمّ في المعايرة؛ وكذلك على هيئة كبريتات الأمونيوم والحديد الثلاثي NH4Fe(SO4)2.12H2O. على العموم تميل أملاح الحديد الثنائي إلى الأكسدة بالهواء إلى أملاح الحديد الثلاثي.[de 21]

المعقدات التناسقية

[عدل]
خضاب أزرق بروسيا
مصاوغان مرآتيان لأيون فري أكسالات.

نظراً للبنية الإلكترونية المميّزة للحديد فهو قادر على تشكيل عددٍ معتبرٍ من المعقّدات التناسقية؛ من الأمثلة النمطية على ذلك الأنيون سداسي كلورو الحديدات [ملاحظة 101] 3−[FeCl6]، حيث يكون الحديد الثلاثي فيه ذا عدد تناسقي مقداره 6؛ وهو متضمّن في بنية المعقّد كلوريد رباعي (ميثيل أمونيوم) سداسي كلورو الحديدات[ملاحظة 102].[109][110] تشبه معقّدات الحديد الثلاثي نظيراتها من الكروم الثلاثي، مع وجود استثناء بتفضيل الحديد الثلاثي للرُبَيطات المانحة لذرة أكسجين عوضاً عن تلك المانحة لذرة نتروجين. إذ لا تعدّ معقّدات الحديد الثلاثي مع الرُبَيطات النتروجينية ذات ثباتية مرتفعة بالمقارنة مع معقّدات الحديد الثنائي، وغالباً ما تتفكّك في المحاليل المائية. تبدي معقّدات الحديد الحاوية على الرابطة Fe–O ألواناً شديدة، وغالباً ما تستخدم في اختبارات الكشف عن الفينولات أو الإينولات، مثلما هو الحال في اختبار كلوريد الحديديك للكشف عن الفينول، إذ يتفاعل كلوريد الحديديك مع الفينول ليشكل معقّداً ذا لون بنفسجي غامق.[111]

من بين المعقّدات مع الهاليدات والهاليدات الزائفة تعدّ معقّدات الحديد الثلاثي الفلورية الأكثر استقراراً، وخاصة معقّد 2− [FeF5(H2O)] عديم اللون في الأوساط المائية. لا تتمتّع المعقّدات الكلورية بثباتية كبيرة، وتميل إلى تفضيل التناسق رباعي السطوح، كما هو الحال في معقّد  [FeCl4]؛ بالمقابل يُختزَل معقّدا  [FeBr4] و [FeI4] بسهولة إلى الحديد الثنائي. كما هو الحال مع المنغنيز الثنائي تمتلك أغلب معقّدات الحديد الثلاثي قيم لفٍّ مغزليٍّ مرتفع، [ملاحظة 103] والاستثناءات تكون لتلك الحاوية على رُبَيطات واقعة في أعلى السلسلة الكيميائية الطيفية مثل السيانيد. من الأمثلة على معقّدات الحديد الثلاثي منخفضة اللفّ المغزلي معقّد 3− [Fe(CN)6]، والذي يمتاز بسهولة انفصام رُبَيطات السيانيد فيه، ولذلك فهو معقّد سام، وذلك على العكس من معقّد الحديد الثنائي 4−[Fe(CN)6] الداخل في تركيب خضاب أزرق بروسيا؛[111] والذي لا يحرّر سيانيد الهيدروجين إلّا عندما يُمزَج مع أحماضٍ ممدّدة.[112] يعدّ خضاب أزرق بروسيا (فِرّوسيانيد الحديديك) من الأمثلة على معقّدات الحديد التناسقية الحاوية على الحديد الثنائي والثلاثي في البنية؛ فهو معقّد له الصيغة Fe4 [Fe(CN)6]3، ويُحضّر من تفاعل ملح للحديد الثلاثي مع فروسيانيد البوتاسيوم K4 [Fe(CN)6].[de 21] على العموم فإن معقّدات الحديد الثنائي التناسقية أقلّ استقراراً وثباتية من نظيراتها من الحديد الثلاثي، إذ تميل إلى التأكسد إلى الحديد الثلاثي، ويمكن التقليل من ذلك بتخفيض قيمة pH الوسط وحسب نوعية الرُبَيطات الموجودة في المعقّد.[112]

تُظهِر معقّدات الحديد العضوية الحاوية على ربيطات ثنائية السن خاصّية التصاوغ الهندسي؛ فعلى سبيل المثال، يلزم المصاوغ المفروق [ملاحظة 104] في اصطناع تركيبات معقّدة [ملاحظة 105] حاوية على ربيطات 2،1-مضاعف (ثنائي فينيل فوسفينو) الإيثان (dppe) في بنيتها.[113][114] يحوي أيون فِرّي أكسالات [ملاحظة 106] على ثلاث ربيطات من الأكسالات، وهو يظهر خاصّية اليدوية المحورية.[ملاحظة 107][111]

المركبات العضوية الفلزية

[عدل]
الصيغة البنوية للفِرّوسين إلى جانب عيّنة منه

تهتمّ كيمياء الحديد العضوية بدراسة المركّبات العضوية لفلزّ الحديد الحاوية على رابطة كيميائية بين الحديد والكربون العضوي. من بينها المعقّدات الكربونيلية والشطيرية [ملاحظة 108] ونصف الشطيرية [ملاحظة 109] من الأمثلة المعروفة على مركّبات الحديد العضوية معقّد الفِرّوسين الشطيري Fe(C5H5)2 والذي يتمتّع بثباتية كبيرة، وله بنية تقع فيها ذرّة الحديد المركزية بين وحدتَين من أنيون حلقي البنتاديينيل. اكتشف هذا المركّب سنة 1951؛[115] وأدّى ذلك الاكتشاف إلى فتح الباب لعديدٍ من الدراسات عن هذا المركّب؛[116] وعن بنيته؛[117][118] وكذلك عن بنية المركّبات الشبيهة لفلزّات أخرى، والتي تُعرَف باسم الميتالوسينات.[ملاحظة 110][119]

من الأمثلة التاريخية أيضاً على مركّبات الحديد العضوية معقّد خماسي كربونيل الحديد Fe(CO)5، والذي ترتبط فيه ذرّة الحديد المركزية المعتدلة بخمس ذرّات كربون لخمس جزيئات من أحادي أكسيد الكربون. يُستخدَم المعقّد من أجل تحضير مسحوق الحديد الكربونيلي،[ملاحظة 111] وهو شكلٌ تجاريٌّ للحديد مرتفعُ النشاط والفعالية الكيميائية. يعطي التفكّك الحراري لمعقّد Fe(CO)5 معقّداً آخر، وهو اثنا عشري كربونيل ثلاثي الحديد [ملاحظة 112] Fe3(CO)12، وهو يحوي على ثلاث ذرّات حديد في نواته المركزية. يعدّ كاشف كولمان [ملاحظة 113] من الكواشف المهمّة في الكيمياء العضوية، وهو يتكوّن كيميائياً من حديدات رباعي كربونيل ثنائي الصوديوم Na2[Fe(CO)4]، وتكون فيه ذرّة الحديد بحالة الأكسدة (-2) النادرة؛ كما توجد أيضاً حالة الأكسدة (+1) النادرة أيضاً للحديد في معقّد مضاعف ثنائي كربونيل حلقي بنتاديينيل الحديد 2[C5H5Fe(CO)2].[120] تُستخدَم المركّبات الحاوية على ذرّة حديد مركزية في مجال التحفيز؛ مثلما هو الحال في معقّد كُنُولكَر،[ملاحظة 114] المستخدَم حفّازاً من أجل هدرجة الكيتونات.[121]

التحليل الكيميائي

[عدل]

يوجد عددٌ من أساليب التحليل النوعية الكيميائية التقليدية للكشف عن الحديد؛[de 30] منها:

تفاعل الكشف باستخدام حمض الثيوغليكوليك

يتفاعل حمض الثيوغليكوليك بوجود أيونات الحديد الثنائي أو الثلاثي ليشكّل معقّداً ذا لون أحمر داكن:[de 31]

أنبوب اختبار يحوي أبونات الحديد الثلاثي (يسار) إلى جانب المعقد مع الثيوسيانات (يمين).
تفاعل الكشف باستخدام الثيوسيانات

يمكن الكشف عن أيونات الحديد الثلاثي باستخدام أيون الثيوسيانات (المعروف أيضاً باسم الرودانيد [ملاحظة 115])، حيث يتشكّل مركّب ثيوسيانات الحديد الثلاثي، ذا اللون الأحمر القانئ:

يمكن أن يحصل تداخل في هذا التحليل في حال وجود أيونات من الكوبالت أو الموليبدنوم أو الزئبق.[de 32]

تفاعل الكشف بتشكل أزرق بروسيا

يعطي تفاعل الحديد الثنائي مع مركّب فريسيانيد البوتاسيوم لوناً أزرق:

كما يقوم بذلك أيضاً تفاعل الحديد الثلاثي مع مركّب فروسيانيد البوتاسيوم:

وينشأ من كلا التفاعلَين لون أزرق، وهو خضاب أزرق بروسيا، إذ تحدث حالة توازن كيميائي بين الشكلَين:[de 33]

الصدأ

[عدل]

إنّ أكبر السلبيات التي تواجه الحديد النقي وأغلب سبائكه هو تشكّل طبقة الصدأ، والتي إن بقيت من غير معالجة، فإنها تسرّع من تآكل المنشآت، وتلك عملية تكلّف كثيراً في الاقتصاد العالمي.[74] تكون التفاعلات الكيميائية الكهربائية في أثناء صدأ الحديد على الشكل التالي:[122]

المِصعَد:

المِهبَط:

التفاعل الإجمالي:

فيتشكّل بالتالي من أيونات الحديد الثلاثي وأيونات الهيدروكسيل الموجودة في الوسط مركّب هيدروكسيد الحديد الثلاثي Fe(OH)3، والذي يتحوّل إلى أكسيد هيدروكسيد الحديد الثلاثي FeO(OH) المميّهة:

والتي يمكن أن تتحوّل إلى أكاسيد الحديد الثنائي والثلاثي الموافقة:

بالنهاية تتشكّل طبقة من الصدأ وهي طبقة مشتركة من أكاسيد الحديد الثنائي والثلاثي لها الصيغة العامة:

لمعالجة مشكلة الصدأ هناك طرائق مختلفة تتمثل بالطلاء أو الغلفنة [ملاحظة 116] أو التخميل [ملاحظة 117] أو التغليف بطبقة من اللدائن أو من خلال عملية تزريق الفولاذ. تعمل تلك الطرائق على حماية الحديد من الصدأ إمّا من خلال حجب ماء الرطوبة أو الأكسجين، أو من خلال الحماية المهبطية.[122]

الصيغة الجزيئية لمركّب 1-أوكتين-3-أون؛ أحد المركبات المسؤولة عن رائحة الحديد.

رائحة الحديد

[عدل]

إنّ الحديد النقي عديم الرائحة؛ إلّا أن الرائحة المميّزة لفلزّ الحديد تنشأ عند ملامسة الأشياء المصنوعة من الحديد، وذلك من التفاعل الكيميائي بين مكوّنات العَرَق والطبقة الدهنية على بشرة الجلد مع أيونات الحديد الثنائي على سطح الحديد.[de 34] أحد المركّبات المسؤولة عن رائحة الحديد النمطية هو 1-أوكتين-3-أون [ملاحظة 118]،[123] وهو مركّب كيتوني غير مشبع ذو رائحة حتّى في تراكيز منخفضة جدّاً.[de 35] توجد هناك مركّبات أخرى من الألدهيدات والكيتونات، والتي تنشأ من فوق أكسدة الليبيدات [ملاحظة 119].[de 36] تنشأ رائحة مشابهة عند دعك الدم على الجلد، لأن الدمّ يحوي أيضاً على أيونات الحديد الثنائي.[de 36]

الدور الحيوي

[عدل]

الحديد ضروريٌّ وأساسيٌّ لوجود الحياة.[124][125] إذ تنتشر العناقيد الكبريتية الحديديّة في عددٍ من الإنزيمات، من ضمنها النتروجيناز، وهو إنزيم مسؤولٌ عن عمليّات تثبيت النيتروجين الحيوية. كما تساهم البروتينات الحاوية على الحديد في عمليّات نقل وتخزين واستخدام الأكسجين؛[126] وكذلك في عمليّات انتقال الإلكترون البَينيّة.[127] يمكن للنمو الميكروبي أن يُعزّز عبر أكسدة الحديد الثنائي أو اختزال الحديد الثلاثي.[128]

بنية صباغ الهيم الموجود في الهيموغلوبين (خضاب الدم)

تعدّ بروتينات الهيم [ملاحظة 120] أشهر الأمثلة على البروتينات الحاوية على الحديد في جسم الإنسان، كل من الهيموغلوبين [ملاحظة 121] (خضاب الدم) والمَيوغلوبين [ملاحظة 122] وسيتوكروم P450 [ملاحظة 123].[126] تساهم هذه البروتينات في نقل الغازات وبناء الإنزيمات ونقل الإلكترونات.[127] من الأمثلة على البروتينات الفلزّية [ملاحظة 124] الحاوية على الحديد كلّ من الفيرّيتين والروبردوكسين [ملاحظة 125]؛[127] كما يوجد هناك عددٌ من الإنزيمات المهمّة الحاوية على الحديد مثل الكاتالاز [ملاحظة 126]،[129][130] وليبوكسيجيناز [ملاحظة 127]،[131] بالإضافة إلى الإنزيم الرابط لعنصر الاستجابة للحديد[ملاحظة 128]؛[132] والفرّيدوكسين [ملاحظة 129].[127] على العموم يشكّل اكتساب الحديد تحدّياً بالنسبة للكائنات الهوائية، إذ أنّ الحديديك (أيون الحديد الثلاثي) ضعيف الانحلالية في الأوساط المعتدلة؛ بالتالي ينبغي لتلك الكائنات أن يكون الحديد فيها على شكل معقّد، وأحياناً يؤخذ الحديد على هيئة حديدوز قبل أن يؤكسَد إلى حديديك.[126] وخاصّةً عند البكتريا، الحاوية على عوامل حاجزة تدعى حاملات الحديد [ملاحظة 130].[133][134]

عند الإنسان

[عدل]

يحوي جسم إنسان بالغ وسطياً على 0.005% (خمسة بالألف) من وزنه حديداً، وذلك يعادل قرابة أربعة غرامات؛ ويكون قرابة ثلاث أرباع تلك الكمّيّة على هيئة هيموغلوبين، وهي سويّة تبقى ثابتة على الرغم أنّ قرابة ميليغرام واحد من الحديد يُمتصّ يومياً من الجسم؛[127] لأنّ الجسم يعيد تدوير الهيموغلوبين من أجل الحفاظ على محتوى الحديد فيه.[135]

بعد دخوله إلى الوسط الخلوي داخل جسم الإنسان، يُضبَط مستوى الحديد بشكلٍ دقيق؛