2022 in paleoichthyology
| |||
---|---|---|---|
This list of fossil fish research presented in 2022 is a list of new fossil taxa of jawless vertebrates, placoderms, cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2022.
Jawless vertebrates
[edit]New jawless vertebrate taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Pteraspidomorphi. Genus includes new species A. falcata. | |||||
Sp. nov | In press | Shan et al. | A member of Eugaleaspidiformes. | |||||
Gen. et sp. nov | Thorsteinsson & Elliott | A member of Traquairaspidiformes belonging to the family Traquairaspididae. Genus includes new species A. lacruma. The generic name is shared with Anomalaspis Brennan (1952).[3] | ||||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ctenaspidae. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ariaspidae. | |||||
Ariaspis majuscula[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ariaspidae. | ||||
Ariaspis multijubata[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ariaspidae. | ||||
Ariaspis nassichuki[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ariaspidae. | ||||
Ariaspis perryi[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Ariaspidae. | ||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Protopteraspididae. | |||||
Canadapteraspis uniformis[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Protopteraspididae. | ||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae. | |||||
Corvaspis porphyretica[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae. | ||||
Corvaspis woodwardi[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae. | ||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Protopteraspididae. Genus includes new species D. borea. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | |||||
Dinaspidella tenuicostata[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | ||||
Gen. et comb. et 3 sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes E. borealis (Denison, 1963), as well as new species E. goodsiri, E. lata and E. solitaria. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Cyathaspidiformes. Genus includes new species G. mutabilis. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Cyathaspidiformes and the family Jarvikaspididae. Genus includes new species G. incohata. | |||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci. Genus includes new species I. dimidiata and I. reinsoni. | |||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Cyathaspidiformes; the type genus of the new family Jarvikaspididae. Genus includes new species J. arctica and J. mauryensis. | |||||
Sp. nov | In press | Shan, Zhao & Gai | Silurian (Telychian) | A member of Eugaleaspidiformes. | ||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species K. boothiaensis. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | |||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Weigeltaspidiformes and the family Weigeltaspididae. Genus includes new species O. magnijubata and O. loefflerae. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species P. franklini. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | |||||
Pionaspis rossi[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | ||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species P. miranda and possibly P? abbottensis. | |||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species P. prolatata and P. smithbayensis. | |||||
Gen. et 2 sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species P. aquilonaris and P. minima. | |||||
Gen. et sp. nov | In press | Shan et al. | Silurian (Telychian) | Qingshui Formation | A member of Eugaleaspidiformes belonging to the family Shuyuidae. The type species is Q. junqingi. | |||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Natlaspidiformes and the family Rimasventeraspididae. | |||||
Rimasventeraspis? septentrionalis[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Natlaspidiformes and the family Rimasventeraspididae. | ||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Cyathaspidiformes. Genus includes new species S. polaris. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. Genus includes new species T. tersa. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Cyathaspidiformes and the family Jarvikaspididae. Genus includes new species T. canadensis. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Weigeltaspidiformes; the type genus of the new family Toraspididae. Genus includes new species T. somersetensis. | |||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of Traquairaspidiformes belonging to the family Traquairaspididae. | |||||
Traquairaspis pristina[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of Traquairaspidiformes belonging to the family Traquairaspididae. | ||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Protopteraspididae. Genus includes new species T. sicula. | |||||
Gen. et sp. nov | Valid | Gai et al. | Silurian (Telychian) | A member of Eugaleaspidiformes; the anatomy of its articulated remains indicates that galeaspids possessed three unpaired dorsal fins, an approximately symmetrical hypochordal tail and a pair of continuous ventrolateral fins. The type species is T. vividus. | ||||
Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | |||||
Vernonaspis parryi[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | ||||
Vernonaspis suffusca[1] | Sp. nov | Valid | Thorsteinsson & Elliott | A member of the family Cyathaspididae. | ||||
Gen. et 3 sp. nov | Valid | Thorsteinsson & Elliott | A member of Heterostraci belonging to the group Corvaspidiformes; the type genus of the new family Westollaspididae. Genus includes new species W. hyperborea, W. cordata and W. gigas. | |||||
Gen. et sp. nov | Valid | Thorsteinsson & Elliott | A member of Traquairaspidiformes belonging to the family Traquairaspididae. Genus includes new species W. spinifera. | |||||
Gen. et sp. nov | Valid | Sun et al. | A member of Eugaleaspidiformes belonging to the family Eugaleaspidae. The type species is X. magnus. | |||||
Gen. et sp. nov | Valid | Chen et al. | Silurian (Llandovery) | A member of Eugaleaspidiformes. Genus includes new species Y. littoralis. |
Jawless vertebrate research
[edit]- A study on the phylogenetic relationships and evolutionary history of lampreys is published by Brownstein & Near (2022), who find Mesomyzon mengae to be a member of the lamprey crown group, and argue that living lamprey biodiversity results from diversifications extending from the Cretaceous to present, rather than gradually accumulating since the Paleozoic.[8]
- Chevrinais et al. (2022) describe the ontogeny of Euphanerops longaevus.[9]
- Meng et al. (2022) describe new fossil material of Pterogonaspis yuhaii from the Devonian Xujiachong Formation (Yunnan, China), providing new information on the cranial anatomy of this galeaspid, including the first fossil evidence for the position of the esophagus in galeaspids.[10]
- The first detailed description of the complex of external endolymphatic structures in headshields of members of the genus Tremataspis from the Silurian of Estonia, with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by Märss, Wilson & Viljus (2022).[11]
Placoderms
[edit]New placoderm taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Jobbins et al. | A member of the family Selenosteidae. The type species is A. trinajsticae. | |||||
Gen. et sp. nov | Valid | Zhu, Li, Ahlberg & Zhu in Zhu et al. | Silurian (Telychian) | Huixingshao Formation | The type species is X. mirabilis. |
Placoderm research
[edit]- A study on the morphology and function of the antiarch jaw apparatus is published by Lebedev et al. (2022).[14]
- Wang & Zhu (2022) describe the squamation and scale morphology of Parayunnanolepis xitunensis, recognize at least thirteen morphotypes of scales in P. xitunensis, and interpret their findings as indicative of the high regionalization of squamation at the root of jawed vertebrates.[15]
- Zhu et al. (2022) redescribe the pelvic region of the holotype of Parayunnanolepis xitunensis, and report that, instead of having two large plates previously designated as dermal pelvic girdles, P. xitunensis had three pairs of lateral pelvic plates and one large oval median pelvic plate.[16]
- Trinajstic et al. (2022) report preservation of a three-dimensionally mineralized heart, thick-walled stomach and bilobed liver from members of Arthrodira from the Devonian Gogo Formation (Australia), and interpret this finding as indicative of the presence of a flat S-shaped heart separated from the liver and other abdominal organs, and of the absence of lungs in members of Arthrodira;[17] subsequently Jensen et al. (2023) question evidence of the presence of a chambered heart in the studied fossil material presented by Trinajstic et al. (2022).[18][19]
Cartilaginous fishes
[edit]New cartilaginous fish taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov | Valid | Collareta et al. | A species of Carcharhinus. | |||||
Sp. nov | Feichtinger et al. | A member of the family Somniosidae. | ||||||
Sp. nov | Malyshkina et al. | Miocene | A species of Dalatias. | |||||
Sp. nov | Valid | Siversson, Cederström & Ryan | A member of Lamniformes. | |||||
Gen. et sp. nov | Valid | Ivanov in Ivanov et al. | Permian | A member of the family Sphenacanthidae. The type species is D. radiata. Published online in 2023, but the issue date is listed as December 2022.[24] | ||||
Gen. et sp. nov | Valid | Pollerspöck & Straube | Late Oligocene and early Miocene | A member of the family Dalatiidae. Genus includes new species D. bracheri. | ||||
Sp. nov | Feichtinger et al. | Late Cretaceous (Maastrichtian) | Gerhartsreit Formation | A member of the family Etmopteridae. | ||||
Gen. et sp. nov | Valid | Andreev, Sansom, Li, Zhao & Zhu in Andreev et al. | Silurian (probably Aeronian) | A probable relative of climatiid "acanthodians". The type species is F. renovata. | ||||
Gen et sp. nov | Feichtinger et al. | Late Cretaceous (Maastrichtian) | Gerhartsreit Formation | A member of Squaliformes of uncertain affinities. The type species is F. eximia. | ||||
Gen. et sp. nov | Valid | Ivanov | A member of Euselachii belonging to the family Protacrodontidae. The type species is G. serratus. | |||||
Gen. et sp. nov | Valid | Ivanov | Carboniferous (Bashkirian–Gzhelian) | Zilim Formation | A member of Ctenacanthiformes belonging to the family Heslerodidae. The type species is H. triangularis. | |||
Sp. nov | Wen et al. | A member of Hybodontiformes. | ||||||
Sp. nov | Feichtinger et al. | Late Cretaceous (Maastrichtian) | Gerhartsreit Formation | A member of the family Etmopteridae. | ||||
Sp. nov | Feichtinger et al. | Late Cretaceous (Maastrichtian) | Gerhartsreit Formation | A member of the family Somniosidae. | ||||
Gen. et sp. nov | Valid | Andreev, Sansom, Li, Zhao & Zhu in Andreev et al. | Silurian (probably Aeronian) | An early jawed vertebrate, likely a stem-chondrichthyan. The type species is Q. duplicis. | ||||
Gen. et sp. nov | Valid | Ivanov | Carboniferous (Moscovian–Gzhelian) | Russia | A shark of uncertain affinities. The type species is S. flexus. | |||
Sp. nov | Valid | Cicimurri, Knight & Ebersole | Oligocene (Rupelian) | A species of Scyliorhinus. | ||||
Gen. et sp. nov | Valid | Zhu, Li, Ahlberg & Zhu in Zhu et al. | Silurian (Telychian) | Huixingshao Formation | A stem-chondrichthyan. The type species is S. vermiformis. | |||
Sp. nov | Valid | Carrillo-Briceño & Cadena | A member of Hybodontiformes belonging to the family Acrodontidae. | |||||
Sp. nov | Adnet & Charpentier | Miocene (Aquitanian) | A stingray, a species of Taeniurops. |
Cartilaginous fish research
[edit]- A study aiming to quantify the completeness of the acanthodian fossil record is published by Schnetz et al. (2022).[34]
- A study on the biomechanical properties and likely function of bony spines in front of the fins of members of the genus Machaeracanthus is published by Ferrón et al. (2022).[35]
- Duffin, Lauer & Lauer (2022) describe chimaeroid egg cases from the Upper Jurassic (Tithonian) Altmühltal Formation (Germany), probably produced by Ischyodus quenstedti, and name a new ichnotaxon Chimaerotheca schernfeldensis.[36]
- Revision of the fossil material originally attributed to Bibractopiscis niger and Orthacanthus commailli, and a study on the implications of these fossils for the knowledge of the evolution of neurocranium in "ctenacanthiforms" and xenacanthiforms, is published by Luccisano et al. (2022).[37]
- A study on the evolutionary history of members of the genus Orthacanthus from France and on their relationships with the other European species is published by Luccisano et al. (2022).[38]
- Greif, Ferrón & Klug (2022) describe the first known fossil cartilage remains from the Devonian Hangenberg black shale from the Moroccan Anti-Atlas, and interpret its morphology as suggestive of ctenacanth affiliation.[39]
- Taxonomic reassessment of a hybodontiform dental assemblage from the lower Kimmeridgian of Czarnogłowy (Poland), and a study on the implications of this assemblage for the knowledge of ecology and biogeography of cartilaginous fishes prior to the Jurassic/Cretaceous transition, is published by Stumpf, Meng & Kriwet (2022)[40]
- Fossil teeth of sharks belonging to the groups Hexanchiformes, Echinorhiniformes, Squaliformes and Lamniformes, including the first record of Protosqualus in northwestern Pacific reported to date, are described from the Upper Cretaceous Nishichirashinai and Omagari formations (Yezo Group, Japan) by Kanno et al. (2022).[41]
- New fossil material of Xampylodon dentatus, including more complete teeth or specimens representing teeth of different positions than most previous records, and the oldest fossil material of Rolfodon tatere reported to date is described from the Upper Cretaceous (Campanian) of James Ross Island (Antarctica) by dos Santos et al. (2022).[42]
- Feichtinger et al. (2022) describe isolated teeth of Protoxynotus misburgensis from the Santonian of Lebanon, representing the first known record of this species from the southern Tethyan Realm, and interpret this finding as indicating that Protoxynotus and Cretascymnus occupied overlapping or similar habitats during the Late Cretaceous.[43]
- Herraiz et al. (2022) describe teeth of a member of the genus Trigonognathus from the El Ferriol outcrop (Miocene of Spain), representing the first known record of this genus from the Mediterranean realm.[44]
- Revision of the fossil record of the genus Echinorhinus in South America is published by Bogan & Agnolín (2022), who consider Echinorhinus pozzi and Echinorhinus maremagnum to be valid species, and consider E. maremagnum to be distinct from Echinorhinus lapaoi.[45]
- A study on the anatomy, growth and ecology of Cretodus crassidens, based on data from a specimen from the Turonian "Lastame" lithofacies of the Scaglia Rossa Veneta (Lessini Mountains, Veneto, northeastern Italy), is published by Amalfitano et al. (2022).[46]
- A tooth of Cetorhinus huddlestoni, as well as gill rakers differing from previously described cetorhinids and referred to the same species as the tooth, are described from the Miocene Duho Formation (South Korea) by Malyshkina, Nam & Kwon (2022).[47]
- A study aiming to determine whether the observed body forms of lamniform sharks are influenced by thermophysiology, and reevaluating the body form of Otodus megalodon proposed by Cooper et al. (2020),[48] is published by Sternes, Wood & Shimada (2022).[49]
- A study on the putative nursery areas and body size patterns across different populations of Otodus megalodon is published by Shimada et al. (2022), who report that specimens of O. megalodon are on average larger in cooler water than those in warmer water, and argue that the previously identified nursery areas may reflect temperature-dependent trends rather than the inferred reproductive strategy.[50]
- McCormack et al. (2022) demonstrate the use of zinc isotopes to assess the trophic level in extant and extinct sharks, and interpret their findings as indicative of dietary shifts throughout the Neogene in sharks belonging to the genera Otodus and Carcharodon, and indicating that Early Pliocene sympatric great white sharks and Otodus megalodon likely occupied a similar mean trophic level.[51]
- Evidence from nitrogen isotope ratios in fossil teeth of members of the genus Otodus, indicating that O. megalodon occupied a higher trophic level than is known for any marine species, extinct or extant, is presented by Kast et al. (2022).[52]
- Cooper et al. (2022) create the first three-dimensional model of the body of Otodus megalodon and use it to infer its movement and feeding ecology, interpreting it as likely able to swim great distances and to feed on prey as large as modern apex predators.[53]
- A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[54]
- A study on the evolutionary history of carcharhiniform sharks is published by Brée, Condamine & Guinot (2022), who interpret their findings as indicative of an early low diversity period followed by a radiation exacerbated since 30 million years ago, as well as indicating that variations in diversification through time were likely linked to reef expansion and temperature change.[55]
- Greenfield, Delsate & Candoni (2022) coin a new name Toarcibatidae for the family of Toarcian batomorphs previously referred to as Archaeobatidae.[56]
- A study on the microstructure of rostral denticles of Ischyrhiza mira is published by Cook et al. (2022)[57]
- New record of large dermal tubercles and bucklers, including tubercles similar in morphology to "Ceratoptera unios" and dermal bucklers similar in morphology to those of the extant roughtail stingray, is reported from the Lower Pleistocene Waccamaw Formation (South Carolina, United States) by Boessenecker & Gibson (2022), who interpret this findings as likely fossils of large stingrays in excess of 3 m disc width.[58]
- A study on the phylogenetic relationships of extant and fossil rays and skates is published by Villalobos-Segura et al. (2022).[59]
- A study on the completeness of the chondrichthyan fossil record from Florida, aiming to determine patterns in taxonomic and ecomorphological diversity of Eocene to Pleistocene chondrichthyans from the Florida Platform, is published by Perez (2022).[60]
- Szabó et al. (2022) describe an assemblage of cartilaginous fishes from the Miocene Tekeres Schlieren Member of the Baden Formation (Hungary), including the first known records of deepwater cartilaginous fishes from the Badenian of the Central Paratethys.[61]
- Fossil material of a diverse shark and ray fauna is reported from the early Pleistocene of Taiwan by Lin, Lin & Shimada (2022).[62]
Ray-finned fishes
[edit]New ray-finned fish taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Acentrogobius. | |||
Sp. nov | Valid | Hilton & Grande | A species of Acipenser. | |||||
Sp. nov | Valid | Hilton & Grande | Late Cretaceous (Maastrichtian) | Hell Creek Formation | A species of Acipenser. | |||
Gen. et sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Possibly a member of Polymixiiformes. The type species is A. alienus. | ||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Amblyeleotris. | |||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Ancistrogobius. | |||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Anisotremus. | ||||
Sp. nov | Valid | Schwarzhans & Keupp | A member of Actinopterygii of uncertain affinities. | |||||
Gen. et sp. nov | Valid | Marramà, Giusberti & Carnevale | Oligocene (Rupelian) | A member of the family Apogonidae belonging to the subfamily Apogoninae. The type species is A. deangelii. | ||||
Sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | Possibly a species of Argentina. | |||
Sp. nov | In press | Than-Marchese & Alvarado-Ortega | Early Cretaceous (Albian) | |||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Astroscopus. | ||||
Sp. nov | Brownstein & Lyson | Paleogene (Danian) | A gar, a species of Atractosteus. | |||||
Sp. nov | Valid | Carnevale & Schwarzhans | A species of Bellottia. | |||||
Sp. nov | Valid | Carnevale & Schwarzhans | Miocene (Tortonian and Messinian) | A species of Benthosema. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Bidenichthys. | ||||
Sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | Originally described as a species of Blennius, but subsequently transferred to the genus Thalassoma.[74] | |||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Higashibessho Formation | A species of Bolinichthys. | |||
Sp. nov | Valid | Carnevale & Schwarzhans | Miocene (Messinian) | A species of Bostrychus. | ||||
Sp. nov | Valid | Bannikov & Zorzin | Eocene | A member of Percoidei of uncertain phylogenetic placement. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Buenia. | ||||
Gen. et comb. nov | De Figueiredo & Gallo | Early Cretaceous | A member of Clupeomorpha belonging to the group Ellimmichthyiformes; a new genus for "Ellimma" cruzae Santos (1990). | |||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Callionymus. | |||
Gen. et sp. nov | Valid | Argyriou et al. | A member of the family Enchodontidae. The type species is C. pavlakiensis. | |||||
Sp. nov | Schwarzhans et al. | Miocene | A member of the family Ariidae. | |||||
Gen. et sp. nov | Valid | Taverne | Late Cretaceous (Cenomanian) | A member of the family Pantodontidae. The type species is C. pankowskii. | ||||
Sp. nov | In press | Schwarzhans & Jagt | Late Cretaceous (Campanian) | A species of Centroberyx. | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Ceratoscopelus. | |||
Sp. nov | Valid | Marramà, Giusberti & Carnevale | Oligocene (Rupelian) | A species of Chaetodon. | ||||
Sp. nov | Valid | Plax | Lepel Beds | An early ray-finned fish. | ||||
Sp. nov | Schwarzhans et al. | Miocene | Pebas Formation | A species of Cichlasoma. | ||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Cirripectes. | |||
Sp. nov | Valid | Lin & Nolf | Eocene | A member of the family Citharidae. | ||||
Gen. et sp. nov | Valid | Stack & Gottfried | Minnekahta Limestone | An early ray-finned fish with anatomical features of the paraphyletic "paleoniscoids". The type species is C. minnekahtaensis. | ||||
Sp. nov | In press | Nam, Nazarkin & Bannikov | Early Miocene | Geumgwangdong Formation | A species of Coreoperca. | |||
Sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | A species of Coris. | |||||
Sp. nov | Valid | Brownstein | Late Paleocene to early Eocene | A gar. | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Diaphus. | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Diaphus. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Diaphus. | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Diaphus. | |||
Sp. nov | In press | Grădianu, Bordeianu & Codrea | Oligocene | Bituminous Marls Formation | A species of Dicentrarchus. | |||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Drombus. | |||
Sp. nov | Valid | Lin & Nolf | Eocene | A member of Albuliformes. | ||||
Sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | ||||
Gen. et sp. nov | Valid | Stringer, Parmley & Quinn | A member of the family Sciaenidae. The type species is E. ebersolei. | |||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Fibramia. | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Fowleria. | ||||
Gen. et comb. nov | In press | Ribeiro, Bockmann & Poyato-Ariza | Early Cretaceous (Aptian) | A member of the family Chanidae; a new genus for "Dastilbe" moraesi Silva-Santos (1955). | ||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | Possibly a species of Fusigobius. | |||
Sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | A teleost of uncertain affinities, possibly near Albuliformes. | |||
Gen. et sp. nov | Valid | Cooper et al. | A member of the family Pachycormidae belonging to the subfamily Asthenocorminae. The type species is G. pectopteri. | |||||
Sp. nov | Valid | Brzobohatý, Zahradníková & Hudáčková | Miocene | Vienna Basin | A species of Gerres. | |||
"aff. Glyptophidium" stringeri[66] | Sp. nov | Valid | Lin & Nolf | Eocene | A cusk-eel. Subsequently transferred to the genus Baobythites by Schwarzhans, Stringer & Takeuchi (2024).[92] | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Gnathophis. | ||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Gobiodon. | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Gobius. | ||||
Sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | A species of Gobius. | |||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Gobius. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A possible species of Gobius. | ||||
Sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | A species of Gobius. | |||||
Gen. et sp. nov | In press | Kim et al. | Late Cretaceous (Maastrichtian) | A member of Osteoglossomorpha. The type species is H. lui. | ||||
Sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | A member of Aulopiformes belonging to the family Ichthyotringidae. | |||
Ichthyotringa pindica[79] | Sp. nov | Valid | Argyriou et al. | Late Cretaceous (Maastrichtian) | ||||
Gen. et comb. nov | Valid | Shen & Arratia | Triassic | A member of the family Thoracopteridae. Genus includes "Thoracopterus" magnificus Tintori & Sassi (1987) and "Thoracopterus" martinisi Tintori & Sassi (1992). | ||||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | Possibly a species of Jaydia. | |||
Sp. nov | Valid | Sferco et al. | Late Miocene | A species of Jenynsia. | ||||
Gen. et sp. nov | Valid | Gouiric-Cavalli & Arratia | A member of Pachycormiformes. Genus includes new species K. lafken. | |||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Kryptophanaron. | ||||
Gen et 2 sp. nov | Valid | Bakaev in Esin & Bakaev | Permian | An early ray-finned fish belonging to the group Palaeonisciformes and the family Palaeoniscidae. The type species is K. gubini Esin & Bakaev; genus also includes K. dozmerensis Esin & Bakaev. Published online in 2023, but the issue date is listed as December 2022.[97] | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Lampadena. | |||
Sp. nov | Valid | Schwarzhans & Radwańska | Miocene (Langhian) | A species of Lampanyctus. | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Lampanyctus. | |||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Takakura Formation | A species of Lampanyctus. | |||
Sp. nov | Valid | Schwarzhans & Keupp | Early Jurassic (Pliensbachian) | Amaltheenton Formation | Extinct species of ray finned fish. | |||
Leptolepis steberae[67] | Sp. nov | Valid | Schwarzhans & Keupp | Early Jurassic (Pliensbachian) | Amaltheenton Formation | |||
Gen. et sp. nov | Valid | Přikryl, Kaur & Murray | A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is L. fugacior. | |||||
Sp. nov | In press | Gallo et al. | A member of the family Semionotidae. | |||||
Sp. nov | Valid | De Gracia et al. | Late Miocene | A species of Makaira. | ||||
Sp. nov | Valid | De Gracia et al. | Late Miocene | A species of Makaira. | ||||
Sp. nov | Valid | Arratia | Upper Prosanto Formation | A member of Teleosteomorpha belonging to the family Marcopoloichthyidae. | ||||
Gen. et 2 sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | A member of the family Gobiidae belonging to the Priolepis lineage within the subfamily Gobiinae. The type species is M. renesulcis; genus also includes M. podolicus. | |||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Mene. | ||||
Gen et sp. nov | Valid | Bulanov, Minikh & Golubev | Permian | A member of Eurynotoidiformes. The type species is M. primus. Published online in 2023, but the issue date is listed as December 2022.[103] | ||||
Gen. et sp. et comb. nov | Valid | Reichenbacher & Bannikov | Miocene | A member of the family Gobiidae. The type species is M. helenae; genus also includes "Knipowitschia" suavis Schwarzhans (2014). | ||||
Gen. et sp. nov | Valid | De Gracia et al. | Late Miocene | Chagres Formation | A marlin. The type species is M. donosochagrense. | |||
Sp. nov | Valid | Lin & Nolf | Eocene | A member of the family Muraenesocidae. | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Neoopisthopterus. | ||||
Sp. nov | Valid | Schwarzhans | Miocene (Langhian) | A species of Nezumia. | ||||
Sp. nov | Valid | Grande & Wilson in Grande et al. | Late Cretaceous (Campanian) | A member of the family Gonorynchidae. | ||||
Gen. et sp. nov | In press | Alvarado-Ortega & Alves | A member of Crossognathiformes belonging to the family Notelopidae. The type species is N. nerivelai. | |||||
Gen. et sp. nov | In press | Micklich & Bannikov | A member of the family Veliferidae. The type species is O. unterfeldensis. | |||||
Sp. nov | Valid | Schwarzhans & Carnevale | Eocene (Bartonian) | Marne di Monte Piano Formation | A lanternfish. | |||
Gen. et sp. nov | Valid | Marramà, Giusberti & Carnevale | Oligocene (Rupelian) | A member of the family Apogonidae belonging to the subfamily Pseudaminae. The type species is O. iancurtisi. | ||||
Gen. et sp. nov | Valid | Marramà, Giusberti & Carnevale | Oligocene (Rupelian) | A member of the family Gobiidae. The type species is O. akihitoi. | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Pagellus. | ||||
Gen. et sp. nov | Valid | Giles et al. | Chadakoin Formation | An early ray-finned fish with affinities to post-Devonian species Wendyichthys dicksoni and Cyranorhis bergeraci. Genus includes new species P. clackorum. | ||||
Sp. nov | Valid | Yang et al. | Oligocene | Shangganchaigou Formation | A member of the family Cyprinidae related to Schizothorax. | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Paraconger. | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A member of the family Congridae. Originally described as a species of Paraconger; subsequently transferred to the genus Protanago by Schwarzhans, Stringer & Takeuchi (2024).[92] | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Parascombrops. | ||||
Sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | A species of Paraulopus. | |||
Gen. et 2 sp. nov | Schwarzhans, Klots & Kovalchuk in Schwarzhans et al. | Miocene | A member of the family Gobiidae belonging to the subfamily Gobiinae and the tribe Gobiosomatini. The type species is P. inauditus; genus also includes P. kiselevi. | |||||
Sp. nov | Valid | Bannikov & Zorzin | Eocene | Monte Bolca | A member of Percoidei belonging to the family Pavarottiidae. | |||
Gen. et sp. nov | Schwarzhans et al. | Miocene | Pebas Formation | A member of the family Sciaenidae. The type species is P. amazonensis. | ||||
Gen. et sp. nov | In press | Richter et al. | Permian (Cisuralian) | Pedra de Fogo Formation | A deep-scaled ray-finned fish. Genus includes new species P. rogersmithii. | |||
Sp. nov | Schwarzhans et al. | Miocene | Pebas Formation | A species of Plagioscion. | ||||
Sp. nov | Valid | Olive, Taverne & Brito | ||||||
Sp. nov | Schwarzhans et al. | Miocene | Pebas Formation | A species of Pogonias. | ||||
Gen. et sp. nov | Schrøder et al. | Eocene | A beardfish. Genus includes new species P. fluere. | |||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Prionotus. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Pristigenys. | ||||
Gen. et sp. nov | In press | Schwarzhans & Jagt | Late Cretaceous (Campanian) | Vaals Formation | A member of Holocentriformes of uncertain affinities. The type species is P. janjanssensi. | |||
Gen. et comb. nov | Valid | De Gracia et al. | Miocene (Messinian) | A marlin. The type species is "Xiphiorhynchus" courcelli Arambourg (1927). | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A species of Pseudophichthys. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Pythonichthys. | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Saurenchelys. | ||||
Sp. nov | In press | Fang & Wu | Late Triassic | Junggar Basin | ||||
Saurichthys taotie[117] | Sp. nov | Valid | Fang et al. | Announced in 2022; the final article version was published in 2023. | ||||
Sp. nov | Valid | Bannikov & Erebakan | Miocene | A species of Scomber. | ||||
Gen. et sp. nov | Valid | Schultze et al. | A member of Teleosteomorpha of uncertain affinities. The type species is S. parva. | |||||
Sp. nov | In press | Schwarzhans & Jagt | Late Cretaceous (Campanian) | Vaals Formation | A member of Holocentriformes of uncertain affinities. | |||
Sp. nov | In press | Carolin et al. | Miocene (Burdigalian) | Quilon Formation | A species of Siphamia. | |||
Gen. et comb. nov | Valid | Carnevale et al. | Eocene | A member of the family Congridae. The type species is "Pseudoxenomystax" treldeensis Schwarzhans (2007); genus also includes "Bathycongrus" waihaoensis Schwarzhans (2019). | ||||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Snyderina. | ||||
Gen. et sp. nov | Murray | Daban Series | A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is S. hadrocephalus. | |||||
Gen. et comb. nov | Valid | De Gracia et al. | Late Miocene | A marlin. The type species is "Istiophorus" calvertensis Berry (1917). | ||||
Gen. et sp. nov | Valid | Murray, Chida & Holmes | Late Cretaceous (Cenomanian) | A member of Aulopiformes belonging to the group Enchodontoidei. Genus includes new species S. pankowskiae. | ||||
Sp. nov | Valid | Schwarzhans et al. | Miocene | Kurosedani Formation | A species of Stenobrachius. | |||
Sp. nov | Nam & Nazarkin | Miocene | A species of Stenobrachius. | |||||
Sp. nov | Valid | Bogan & Agnolin | Late Miocene | A species of Sturisomatichthys. | ||||
Sp. nov | Valid | Lin & Nolf | Eocene | A cusk-eel. | ||||
Sp. nov | Valid | Yuan et al. | A member of the family Perleididae. | |||||
Gen. et sp. nov | In press | Schwarzhans, Stringer & Welton | Early Cretaceous (Albian) | Pawpaw Formation | Possibly a member of Polymixiiformes. The type species is T. cyclogaster. | |||
Sp. nov | Valid | Brzobohatý, Zahradníková & Hudáčková | Miocene | Vienna Basin | A species of Thorogobius. | |||
Sp. nov | Valid | Van Hinsbergh & Hoedemakers | Pliocene | A species of Thorogobius. | ||||
Sp. nov | Valid | Schwarzhans & Kovalchuk | Miocene | A species of Trachinus. | ||||
Sp. nov | Schwarzhans et al. | Miocene | Pebas Formation | A species of Umbrina. | ||||
Gen et comb. nov | Valid | Bulanov, Minikh & Golubev | Permian | Poldarsa/Poldarskaya Formation | A member of Eurynotoidiformes. The type species is "Isadia" opokiensis Minikh & Andrushkevich (2017). Published online in 2023, but the issue date is listed as December 2022.[103] | |||
Sp. nov | Valid | Lin & Nolf | Eocene | A member of the subfamily Hemerocoetinae. | ||||
Xinjiangodus[127] | Gen. et sp. nov | Junior homonym | Zhou et al. | Late Cretaceous | Donggou Formation | A member of the family Pycnodontidae. Genus includes new species X. gyrodoides. The generic name is preoccupied by Xinjiangodus Yue & Gao (1992). |
Ray-finned fish research
[edit]- A new database of the occurrences of Paleozoic ray-finned fishes is presented by Henderson et al. (2022), who evaluate the impact of fossil record biases, as well as taxonomic and phylogenetic issues, on the knowledge of the early evolution of ray-finned fishes;[128] subsequently Henderson, Dunne & Giles (2022) use this database to study patterns of diversity of ray-finned fishes through the Paleozoic, taking the extent and impact of sampling biases into account.[129]
- A novel mode of fang accommodation, with teeth of the lower jaw inserting into fenestrae of the upper jaw, is reported in Brazilichthys macrognathus by Figueroa & Andrews (2022).[130]
- Redescription and a study on the affinities of Toyemia is published by Bakaev & Kogan (2022).[131]
- Redescription of the anatomy and a study on the affinities of Brachydegma caelatum is published by Argyriou, Giles & Friedman (2022).[132]
- Osteoderms providing evidence of presence of large sturgeons (within the upper size bracket for Acipenseridae) in early-middle Paleocene freshwater ecosystems of western North America are described from the Fort Union Formation (Montana, United States) by Brownstein (2022).[133]
- Fossil material of a member or a relative of the genus Eomesodon, representing the oldest record of pycnodonts from East Gondwana reported to date, is described from the Middle Jurassic (Bathonian) Jaisalmer Formation (Rajasthan, India) by Kumar et al. (2022).[134]
- A study on the tooth replacement pattern and implantation in Serrasalmimus secans is published by Matsui & Kimura (2022), who interpret their findings as indicating that serrasalmimid pycnodont fish independently acquired a vertical replacement in true thecodont implantation, i.e. a characteristic tooth replacement pattern of mammals.[135]
- A study on the phylogenetic relationships and evolutionary history of extant and extinct gars is published by Brownstein et al. (2022).[136]
- Redescription and a study on the affinities of Saurostomus esocinus is published by Cooper & Maxwell (2022), who interpret this taxon as the basalmost transitional member of the suspension-feeding clade of pachycormids.[137]
- A study on bone repair in response to damage in Leedsichthys problematicus is published by Johanson et al. (2022).[138]
- Redescription and a study on the affinities of Thaumaturus intermedius is published by Micklich & Arratia (2022).[139]
- Redescription of "Diplomystus" solignaci is published by Marramà, Khalloufi & Carnevale (2022), who interpret this fish as a paraclupeid ellimmichthyiform, and transfer it to the genus Paraclupea.[140]
- A study on cranial morphological features that diagnose known families of catfishes, and on their implications for the knowledge of the affinities of catfishes from the Paleogene of Africa, is published by Murray & Holmes (2022), who reassess the familial placement of the Paleogene African catfishes and assign Eomacrones wilsoni to the family Bagridae sensu stricto.[141]
- Description of new fossil material of Enchodus from the Cenomanian of Ukraine, and a revision of earlier records of Enchodus from Ukraine, is published by Kovalchuk, Barkaszi & Anfimova (2022).[142]
- Redescription and a study on the phylogenetic affinities of Protosyngnathus sumatrensis is published by Murray (2022).[143]
- A study on the phylogenetic affinities of fossil gobioids is published by Gierl et al. (2022).[144]
- New specimen of Mene rhombea with extensive soft tissue preservation and striking colour patterning is described from the Eocene (Ypresian) Monte Bolca Lagerstätte (Italy) by Rossi et al. (2022).[145]
- A study on patterns of body size evolution of tetraodontiforms in relation to paleoclimate events is published by Troyer et al. (2022).[146]
- Přikryl et al. (2022) describe a new specimen of Archaeotetraodon winterbottomi from the Oligocene Rybnytsia Member of the Menilite Series (Ukraine), providing new information on the anatomy of this tetraodontid.[147]
Lobe-finned fishes
[edit]New lobe-finned fish taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov | Valid | Wang et al. | Announced in 2021; the final version of the article naming it was published in 2022. | |||||
Ceratodus shishkini[149] | Sp. nov | Valid | Minikh | Triassic | Published online in 2023, but the issue date is listed as December 2022.[149] | |||
Gen. et sp. nov | Valid | Luo et al. | A lungfish. The type species is D. huizeensis. | |||||
Sp. nov | Brownstein & Bissell | Triassic | A coelacanth. | |||||
Sp. nov | Valid | Downs & Daeschler | Devonian (Frasnian) | A member of the family Tristichopteridae. | ||||
Sp. nov | Valid | Ferrante, Menkveld-Gfeller & Cavin | A coelacanth belonging to the family Latimeriidae. | |||||
Gen. et sp. nov | Valid | Stewart et al. | Devonian (Frasnian) | An elpistostegalian. The type species is Q. wakei. | ||||
Sp. nov | Valid | Smirnova | ||||||
Gen. et sp. nov | Valid | Panzeri et al. | Late Cretaceous (Santonian) | A lungfish belonging to the family Ceratodontidae. The type species is R. salvadori. |
Lobe-finned fish research
[edit]- Review of the phylogenetic analyses of onychodont relationships, aiming to determine the sources of discrepancies in the different phylogenetic hypotheses, is published by Ciudad Real et al. (2022).[157]
- A study on the histology of the median fin bones and life history of Miguashaia bureaui is published by Mondéjar Fernandez et al. (2022).[158]
- Toriño et al. (2022) describe a large mawsoniid coelacanth from the Upper Jurassic Kimmeridge Clay (United Kingdom), interpret its morphology as unexpectedly similar to the morphology of Mawsonia, and consider the studied coelacanth to be either an unknown Mawsonia-like form or a member of the lineage of Trachymetopon with some morphological characters previously assumed as diagnostic for Mawsonia.[159]
- Description of cranial endocasts of six Paleozoic lungfish (Iowadipterus halli, Gogodipterus paddyensis, Pillararhynchus longi, Griphognathus whitei, Orlovichthys limnatis, Rhinodipterus ulrichi), and a study on the evolution of crania, brains and sensory abilities of lungfish, is published by Clement et al. (2022).[160]
- Description of two well-preserved specimens of Youngolepis praecursor from the Devonian Xitun Formation (China), and a study on the implications of these specimens for the knowledge of the evolution of the specialized lungfish feeding mechanism, is published by Cui et al. (2022).[161]
- A study on the anatomy of the neurocrania of Scaumenacia curta and Pentlandia macroptera is published by Boirot, Challands & Cloutier (2022), who report that the neurocranium of P. macroptera was at least partially ossified, while S. curta had a cartilaginous neurocranium, and evaluate the implications of their findings for the knowledge of paedomorphosis in lungfish evolution.[162]
- A study on the histology of the tooth plates of Metaceratodus baibianorum from the Upper Cretaceous La Colonia Formation (Argentina) is published by Panzeri, Pereyra & Cione (2022).[163]
- A study on the anatomy and affinities of Palaeospondylus gunni is published by Hirasawa et al. (2022), who interpret this taxon as a sarcopterygian, and likely a stem-tetrapod;[164] their conclusions are subsequently contested by Brownstein (2023).[165][166]
Other
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | A bony fish of uncertain affinities, possibly a lobe-finned fish. Genus includes new species P. waurikensis. |
General research
[edit]- A study on the evolution of swimming speed in early vertebrates, inferred from caudal fin morphology of Paleozoic cyclostomes (Myxinidae and Petromyzontidae), jawless stem gnathostomes (Conodonta, Anaspida, Pteraspidomorphi, Thelodonti and Osteostraci) and placoderms, is published by Ferrón & Donoghue (2022), who interpret their findings as indicating that microsquamous taxa (thelodonts and anaspids) had higher swimming capabilities than vertebrates with rigid bony carapaces (including placoderms), that demonstrating that the rise of active nektonic vertebrates long-predated the Devonian.[168]
- A study on the morphological similarities of Silurian and Devonian jawless and jawed vertebrates, aiming to determine which groups were most and least likely to have competed (and whether competition with jawed vertebrates was likely to cause the extinction of the majority of jawless vertebrates), is published by Scott & Anderson (2022), who don't find support for overall competitive exclusion of jawless vertebrates by jawed vertebrates.[169]
- A study on the evolution of the vertebrate spiracular region from jawless vertebrates to tetrapods is published by Gai et al. (2022).[170]
- A study on the mandibular morphology of Silurian and Devonian jawed vertebrates, and on the functional capabilities of their jaws, is published by Deakin et al. (2022).[171]
- Description of the ichthyolith assemblage from the Upper Triassic Luning Formation (Nevada, United States), increasing known diversity of marine vertebrates in the western United States in the Late Triassic from four to at least 14 genera, is published by Tackett, Zierer & Clement (2022), who report evidence of the presence of taxa that were previously known only from Europe during the Late Triassic.[172]
- Revision of the marine fish fauna from the Upper Cretaceous (Campanian) Rybushka Formation (Saratov Oblast, Russia) is published by Ebersole et al. (2022).[173]
- A study aiming to reconstruct the fish community and oceanographic conditions off the coast of Peru during the last interglacial, based on data from sediments from the northern Humboldt Current system, is published by Salvatteci et al. (2022).[174]
- Review of the fossil material providing information on the reproduction of extinct fishes is published by Capasso (2022), who names new ootaxa Theutonicootheca primigenia (possible egg capsule of jawless vertebrates or placoderms from the Emsian Kaub Formation, Germany), Beargulchootheca carbonifera (possible egg capsule of cartilaginous fishes from the Mississippian Bear Gulch Limestone of the Heath Formation, Montana, United States), Palaeochimaerootheca browni (egg capsule of chimaerids from the Pennsylvanian Cherokee Shale, Missouri, and Mazon Creek fossil beds, Illinois, United States), and Parascylliootheca libanica (egg capsule of parascylliids from the Cretaceous Sannine Formation, Lebanon).[175]
References
[edit]- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as Thorsteinsson, R.; Elliott, D. K. (2022). "Silurian and Devonian Heterostraci (Vertebrata) of the Canadian Arctic Archipelago". Palaeontographica Canadiana. 40: 1–348. ISBN 978-1-897095-94-2.
- ^ a b Shan, X.; Gai, Z.; Lin, X.; Chen, Y.; Zhu, M.; Zhao, W. (2022). "The oldest eugaleaspiform fishes from the Silurian red beds in Jiangxi, South China and their stratigraphic significance". Journal of Asian Earth Sciences. 229: Article 105187. Bibcode:2022JAESc.22905187S. doi:10.1016/j.jseaes.2022.105187. S2CID 247493604.
- ^ Brennan, J. M. (1952). "Two New Venezuelan Chiggers (Acarina: Trombiculidae)". The Journal of Parasitology. 38 (2): 143–146. doi:10.2307/3273833. JSTOR 3273833. PMID 14946627.
- ^ Shan, X.; Zhao, W.; Gai, Z. (2022). "A New Species of Jiangxialepis (Galeaspida) from the Lower Telychian (Silurian) of Jiangxi and its Biostratigraphic Significance". Acta Geologica Sinica (English Edition). 97 (2): 393–403. doi:10.1111/1755-6724.15009. S2CID 252813209.
- ^ Gai, Z.; Li, Q.; Ferrón, H. G.; Keating, J. N.; Wang, J.; Donoghue, P. C. J.; Zhu, M. (2022). "Galeaspid anatomy and the origin of vertebrate paired appendages" (PDF). Nature. 609 (7929): 959–963. Bibcode:2022Natur.609..959G. doi:10.1038/s41586-022-04897-6. hdl:1983/39f23cba-4a2b-4d8f-92fe-dbfc89869c26. PMID 36171376. S2CID 252569951.
- ^ Sun, H.-R.; Gai, Z.-K.; Cai, J.-C.; Li, Q.; Zhu, M.; Zhao, W.-J. (2022). "Xitunaspis, a new eugaleaspid fish (Eugaleaspiformes, Galeaspida) from the Lower Devonian of Qujing, Yunnan". Vertebrata PalAsiatica. 60 (3): 169–183. doi:10.19615/j.cnki.2096-9899.220412.
- ^ Chen, Y.; Gai, Z.; Li, Q.; Wang, J.; Peng, L.; Wei, G.; Zhu, M. (2022). "A New Family of Galeaspids (Jawless Stem-Gnathostomata) from the Early Silurian of Chongqing, Southwestern China". Acta Geologica Sinica (English Edition). 96 (2): 430–439. Bibcode:2022AcGlS..96..430C. doi:10.1111/1755-6724.14909. S2CID 247063430.
- ^ Brownstein, C. D.; Near, T. J. (2022). "Phylogenetics and the Cenozoic radiation of lampreys". Current Biology. 33 (2): 397–404.e3. doi:10.1016/j.cub.2022.12.018. PMID 36586410. S2CID 255278945.
- ^ Chevrinais, M.; Morel, C.; Renaud, C. B.; Cloutier, R. (2022). "Ontogeny of Euphanerops longaevus from the Upper Devonian Miguasha Fossil-Fish-Lagerstätte and comparison with the skeletogenesis of the Sea Lamprey Petromyzon marinus". Canadian Journal of Earth Sciences. 60 (3): 350–365. doi:10.1139/cjes-2022-0062. S2CID 254529477.
- ^ Meng, X.-Y.; Zhu, M.; Li, Q.; Gai, Z.-K. (2022). "New data on the cranial anatomy of Pterogonaspis (Tridensaspidae, Galeaspida) from the lower Devonian of Yunnan, China and its evolutionary implications". The Anatomical Record. doi:10.1002/ar.25098. PMID 36271627. S2CID 253063254.
- ^ Märss, T.; Wilson, M. V. H.; Viljus, M. (2022). "Endolymphatic structures in headshields of the osteostracan genus Tremataspis (Agnatha) from the Silurian of Estonia". Estonian Journal of Earth Sciences. 71 (3): 135–156. doi:10.3176/earth.2022.10. S2CID 251653409.
- ^ Jobbins, M.; Rücklin, M.; Ferrón, H. G.; Klug, C. (2022). "A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology". Frontiers in Ecology and Evolution. 10. 969158. doi:10.3389/fevo.2022.969158. hdl:10550/85583.
- ^ a b Zhu, Y.; Li, Q.; Lu, J.; Chen, Y.; Wang, J.; Gai, Z.; Zhao, W.; Wei, G.; Yu, Y.; Ahlberg, P. E.; Zhu, M. (2022). "The oldest complete jawed vertebrates from the early Silurian of China". Nature. 609 (7929): 954–958. Bibcode:2022Natur.609..954Z. doi:10.1038/s41586-022-05136-8. PMID 36171378. S2CID 252569910.
- ^ Lebedev, O. A.; Johanson, Z.; Kuznetsov, A. N.; Tsessarsky, A.; Trinajstic, K.; Isakhodzayev, F. B. (2022). "Feeding in the Devonian antiarch placoderm fishes: a study based upon morphofunctional analysis of jaws". Journal of Paleontology. 96 (6): 1413–1430. Bibcode:2022JPal...96.1413L. doi:10.1017/jpa.2022.54. S2CID 250572280.
- ^ Wang, Y.; Zhu, M. (2022). "Squamation and scale morphology at the root of jawed vertebrates". eLife. 11: e76661. doi:10.7554/eLife.76661. PMC 9177148. PMID 35674421.
- ^ Zhu, Y.-A.; Wang, Y.-J.; Qu, Q.-M.; Lu, J.; Zhu, M. (2022). "The pelvic morphology of Parayunnanolepis (Placodermi, Antiarcha) revealed by tomographic data". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.221126.
- ^ Trinajstic, K.; Long, J. A.; Sanchez, S.; Boisvert, C. A.; Snitting, D.; Tafforeau, P.; Dupret, V.; Clement, A. M.; Currie, P. D.; Roelofs, B.; Bevitt, J. J.; Lee, M. S. Y.; Ahlberg, P. E. (2022). "Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte". Science. 377 (6612): 1311–1314. Bibcode:2022Sci...377.1311T. doi:10.1126/science.abf3289. PMID 36107996. S2CID 252310376.
- ^ Jensen, B.; Moorman, A. F. M.; Wang, T.; Møller, P. R.; Icardo, J. M.; Lauridsen, H. (2023). "Comment on "Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte"". Science. 380 (6645). eadg2748. doi:10.1126/science.adg2748. PMID 37167376. S2CID 258618457.
- ^ Trinajstic, K.; Long, J. A.; Sanchez, S.; Boisvert, C. A.; Snitting, D.; Tafforeau, P.; Dupret, V.; Clement, A. M.; Currie, P. D.; Roelofs, B.; Bevitt, J. J.; Lee, M. S. Y.; Ahlberg, P. E. (2023). "Response to comment on "Exceptional preservation of organs in Devonian placoderms from the Gogo largerstätte"". Science. 380 (6645). eadg3748. doi:10.1126/science.adg3748. PMID 37167391. S2CID 258618430.
- ^ Collareta, A.; Kindlimann, R.; Baglioni, A.; Landini, W.; Sarti, G.; Altamirano, A.; Urbina, M.; Bianucci, G. (2022). "Dental Morphology, Palaeoecology and Palaeobiogeographic Significance of a New Species of Requiem Shark (Genus Carcharhinus) from the Lower Miocene of Peru (East Pisco Basin, Chilcatay Formation)". Journal of Marine Science and Engineering. 10 (10). 1466. doi:10.3390/jmse10101466.
- ^ a b c d Feichtinger, I.; Pollerspöck, J.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Guinot, G. (2022). "Shifts in composition of northern Tethyan elasmobranch assemblages during the last millennia of the Cretaceous". Cretaceous Research. 142. 105414. doi:10.1016/j.cretres.2022.105414. S2CID 253320811.
- ^ Malyshkina, T. P.; Ward, D. J.; Nazarkin, M. V.; Nam, G.-S.; Kwon, S.-H.; Lee, J.-H.; Kim, T.-W.; Kim, D.-K.; Baek, D.-S. (2022). "Miocene Elasmobranchii from the Duho Formation, South Korea". Historical Biology: An International Journal of Paleobiology. 35 (9): 1726–1741. doi:10.1080/08912963.2022.2110870. S2CID 252512629.
- ^ Siversson, M.; Cederström, P.; Ryan, H. E. (2022). "A new dallasiellid shark from the lower Campanian (Upper Cretaceous) of Sweden". GFF. 144 (2): 118–125. Bibcode:2022GFF...144..118S. doi:10.1080/11035897.2022.2097737. S2CID 252685325.
- ^ a b Ivanov, A. O.; Kovalenko, E. S.; Murashev, M. M.; Podurets, K. M. (2022). "Euselachian Sharks (Elasmobranchii, Chondrichthyes) from the Middle and Late Permian of European Russia". Paleontological Journal. 56 (11): 1372–1384. Bibcode:2022PalJ...56.1372I. doi:10.1134/S0031030122110065. S2CID 256618403.
- ^ Pollerspöck, J.; Straube, N. (2022). "Phylogenetic placement and description of an extinct genus and species of kitefin shark based on tooth fossils (Squaliformes: Dalatiidae)". Journal of Systematic Palaeontology. 19 (15): 1083–1096. doi:10.1080/14772019.2021.2012537. S2CID 246398258.
- ^ Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "Spiny chondrichthyan from the lower Silurian of South China". Nature. 609 (7929): 969–974. Bibcode:2022Natur.609..969A. doi:10.1038/s41586-022-05233-8. PMID 36171377. S2CID 252570103.
- ^ a b c Ivanov, A. O. (2022). "New late Carboniferous chondrichthyans from the European Russia". Bulletin of Geosciences. 97 (2): 219–234. doi:10.3140/bull.geosci.1845. S2CID 249479522.
- ^ Wen, W.; Kriwet, J.; Zhang, Q.; Benton, M. J.; Duffin, C. J.; Huang, J.; Zhou, C.; Hu, S.; Ma, Z. (2022). "Hybodontiform shark remains (Chondrichthyes, Elasmobranchii) from the Lower Triassic of Yunnan Province, China, with comments on hybodontiform diversity across the PTB". Journal of Vertebrate Paleontology. 42 (1): e2108712. Bibcode:2022JVPal..42E8712W. doi:10.1080/02724634.2022.2108712. S2CID 252136919.
- ^ Feichtinger, I.; Guinot, G.; Straube, N.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Schellhorn, S.; Ladwig, J.; Thies, D.; Pollerspöck, J. (2022). "Revision of the Cretaceous shark Protoxynotus (Chondrichthyes, Squaliformes) and early evolution of somniosid sharks". Cretaceous Research. 140: Article 105331. Bibcode:2022CrRes.14005331F. doi:10.1016/j.cretres.2022.105331. hdl:11250/3061165. S2CID 251560679.
- ^ Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. Bibcode:2022Natur.609..964A. doi:10.1038/s41586-022-05166-2. PMID 36171375. S2CID 252569771.
- ^ Cicimurri, D. J.; Knight, J. L.; Ebersole, J. A. (2022). "Early Oligocene (Rupelian) fishes (Chondrichthyes, Osteichthyes) from the Ashley Formation (Cooper Group) of South Carolina, USA". PaleoBios. 39 (1): ucmp_paleobios_56976. doi:10.5070/P939056976. S2CID 247912932.
- ^ Carrillo-Briceño, J. D.; Cadena, E.-A. (2022). "A new hybodontiform shark (Strophodus Agassiz 1838) from the Lower Cretaceous (Valanginian-Hauterivian) of Colombia". PeerJ. 10: e13496. doi:10.7717/peerj.13496. PMC 9167585. PMID 35673391.
- ^ Adnet, S.; Charpentier, V. (2022). "A new elasmobranch fauna from the early Miocene of Sharbithat (Sultanate of Oman) reveals the teeth of an ancient fantail stingray". Geologica Acta. 20: 1–13. doi:10.1344/GeologicaActa2022.20.2. S2CID 248021945.
- ^ Schnetz, L.; Butler, R. J.; Coates, M. I.; Sansom, I. J. (2022). "Skeletal and soft tissue completeness of the acanthodian fossil record". Palaeontology. 65 (4): e12616. Bibcode:2022Palgy..6512616S. doi:10.1111/pala.12616. S2CID 250629392.
- ^ Ferrón, H. G.; Ballell, A.; Botella, H.; Martínez-Pérez, C. (2022). "Biomechanics of Machaeracanthus pectoral fin spines provide evidence for distinctive spine function and lifestyle among early chondrichthyans". Journal of Vertebrate Paleontology. 41 (6): e2090260. doi:10.1080/02724634.2021.2090260. hdl:1983/8ecd422d-e133-43f8-ae51-f9909667d5b3. S2CID 250653369.
- ^ Duffin, C. J.; Lauer, B.; Lauer, R. (2022). "Chimaeroid egg cases from the Late Jurassic of the Solnhofen area (S Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 306 (2): 161–175. doi:10.1127/njgpa/2022/1101. S2CID 253870360.
- ^ Luccisano, V.; Rambert-Natsuaki, M.; Cuny, G.; Amiot, R.; Pouillon, J.-M.; Pradel, A. (2022). "Phylogenetic implications of the systematic reassessment of Xenacanthiformes and 'Ctenacanthiformes' (Chondrichthyes) neurocrania from the Carboniferous–Permian Autun Basin (France)". Journal of Systematic Palaeontology. 19 (23): 1623–1642. doi:10.1080/14772019.2022.2073279. S2CID 239328598.
- ^ Luccisano, V.; Pradel, A.; Amiot, R.; Pouillon, J.-M.; Kindlimann, R.; Steyer, J.-S.; Cuny, G. (2022). "Systematics, ontogeny and palaeobiogeography of the genus Orthacanthus (Diplodoselachidae, Xenacanthiformes) from the lower Permian of France". Papers in Palaeontology. 8 (6): e1470. Bibcode:2022PPal....8E1470L. doi:10.1002/spp2.1470. S2CID 253701703.
- ^ Greif, M.; Ferrón, H. G.; Klug, C. (2022). "A new Meckel's cartilage from the Devonian Hangenberg black shale in Morocco and its position in chondrichthyan jaw morphospace". PeerJ. 10. e14418. doi:10.7717/peerj.14418. PMC 9789696. PMID 36573235.
- ^ Stumpf, S.; Meng, S.; Kriwet, J. (2022). "Diversity Patterns of Late Jurassic Chondrichthyans: New Insights from a Historically Collected Hybodontiform Tooth Assemblage from Poland". Diversity. 14 (2): Article 85. doi:10.3390/d14020085.
- ^ Kanno, S.; Tokumaru, S.; Nakagaki, S.; Nakajima, Y.; Misaki, A.; Hikida, Y.; Sato, T. (2022). "Santonian-Campanian neoselachian faunas of the Upper Cretaceous Yezo Group in Nakagawa Town, Hokkaido, Japan". Cretaceous Research. 133: Article 105139. Bibcode:2022CrRes.13305139K. doi:10.1016/j.cretres.2022.105139. S2CID 245831871.
- ^ dos Santos, R. O.; Riff, D.; Amenábar, C. R.; Ramos, R. R. C.; Rodrigues, I. F.; Scheffler, S. M.; Carvalho, M. A. (2022). "New records of hexanchiform sharks (Elasmobranchii: Neoselachii) from the Late Cretaceous of Antarctica with comments on previous reports and described taxa". New Zealand Journal of Geology and Geophysics. 67 (2): 1–16. doi:10.1080/00288306.2022.2143382. S2CID 253570784.
- ^ Feichtinger, I.; Kindlimann, R.; Guinot, G.; Harzhauser, M.; Pollerspöck, J. (2022). "First record of the somniosid shark Protoxynotus misburgensis from the Santonian (Late Cretaceous) of the Southern Tethyan Realm". Historical Biology: An International Journal of Paleobiology. 36 (2): 1–6. doi:10.1080/08912963.2022.2162401. S2CID 255331620.
- ^ Herraiz, J. L.; Carrillo-Briceño, J. D.; Ferrón, H. G.; Adnet, S.; Botella, H.; Martínez-Pérez, C. (2022). "First fossil record (Middle Miocene) of the viper shark Trigonognathus Mochizuki and Ohe, 1990, in the Mediterranean realm". Journal of Vertebrate Paleontology. 42 (1). e2114360. Bibcode:2022JVPal..42E4360H. doi:10.1080/02724634.2022.2114360. hdl:10550/84833. S2CID 253065446.
- ^ Bogan, S.; Agnolín, F. L. (2022). "The fossil record of the Bramble-shark Echinorhinus (Echinorhiniformes, Echinorhinidae) in South America". Journal of South American Earth Sciences. 120. 104083. Bibcode:2022JSAES.12004083B. doi:10.1016/j.jsames.2022.104083. S2CID 253173677.
- ^ Amalfitano, J.; Dalla Vecchia, F. M.; Carnevale, G.; Fornaciari, E.; Roghi, G.; Giusberti, L. (2022). "Morphology and paleobiology of the Late Cretaceous large-sized shark Cretodus crassidens (Dixon, 1850) (Neoselachii; Lamniformes)". Journal of Paleontology. 96 (5): 1166–1188. Bibcode:2022JPal...96.1166A. doi:10.1017/jpa.2022.23. S2CID 248702856.
- ^ Malyshkina, T. P.; Nam, G.-S.; Kwon, S. H. (2022). "Basking shark remains (Lamniformes, Cetorhinidae) from the Miocene of South Korea". Journal of Vertebrate Paleontology. 41 (5): e2037625. doi:10.1080/02724634.2021.2037625. S2CID 247466156.
- ^ Cooper, J. A.; Pimiento, C.; Ferrón, H. G.; Benton, M. J. (2020). "Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction". Scientific Reports. 10 (1): Article number 14596. Bibcode:2020NatSR..1014596C. doi:10.1038/s41598-020-71387-y. PMC 7471939. PMID 32883981.
- ^ Sternes, P. C.; Wood, J. J.; Shimada, K. (2023). "Body forms of extant lamniform sharks (Elasmobranchii: Lamniformes), and comments on the morphology of the extinct megatooth shark, Otodus megalodon, and the evolution of lamniform thermophysiology". Historical Biology: An International Journal of Paleobiology. 35 (1): 139–151. Bibcode:2023HBio...35..139S. doi:10.1080/08912963.2021.2025228. S2CID 246655344.
- ^ Shimada, K.; Maisch, H. M.; Perez, V. J.; Becker, M. A.; Griffiths, M. L. (2023). "Revisiting body size trends and nursery areas of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), reveals Bergmann's rule possibly enhanced its gigantism in cooler waters". Historical Biology: An International Journal of Paleobiology. 35 (2): 208–217. Bibcode:2023HBio...35..208S. doi:10.1080/08912963.2022.2032024. S2CID 247311831.
- ^ McCormack, J.; Griffiths, M. L.; Kim, S. L.; Shimada, K.; Karnes, M.; Maisch, H.; Pederzani, S.; Bourgon, N.; Jaouen, K.; Becker, M. A.; Jöns, N.; Sisma-Ventura, G.; Straube, N.; Pollerspöck, J.; Hublin, J.-J.; Eagle, R. A.; Tütken, T. (2022). "Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes". Nature Communications. 13 (1): Article number 2980. Bibcode:2022NatCo..13.2980M. doi:10.1038/s41467-022-30528-9. PMC 9156768. PMID 35641494.
- ^ Kast, E. R.; Griffiths, M. L.; Kim, S. L.; Rao, Z. C.; Shimada, K.; Becker, M. A.; Maisch, H. M.; Eagle, R. A.; Clarke, C. A.; Neumann, A. N.; Karnes, M. E.; Lüdecke, T.; Leichliter, J. N.; Martínez-García, A.; Akhtar, A. A.; Wang, X. T.; Haug, G. H.; Sigman, D. M. (2022). "Cenozoic megatooth sharks occupied extremely high trophic positions". Science Advances. 8 (25): eabl6529. Bibcode:2022SciA....8L6529K. doi:10.1126/sciadv.abl6529. PMC 9217088. PMID 35731884.
- ^ Cooper, J. A.; Hutchinson, J. R.; Bernvi, D. C.; Cliff, G.; Wilson, R. P.; Dicken, M. L.; Menzel, J.; Wroe, S.; Pirlo, J.; Pimiento, C. (2022). "The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling". Science Advances. 8 (33): eabm9424. Bibcode:2022SciA....8M9424C. doi:10.1126/sciadv.abm9424. PMC 9385135. PMID 35977007.
- ^ Benites-Palomino, A.; Velez-Juarbe, J.; Altamirano-Sierra, A.; Collareta, A.; Carrillo-Briceño, J. D.; Urbina, M. (2022). "Sperm whales (Physeteroidea) from the Pisco Formation, Peru, and their trophic role as fat sources for late Miocene sharks". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220774. doi:10.1098/rspb.2022.0774. PMC 9240678. PMID 35765834.
- ^ Brée, B.; Condamine, F. L.; Guinot, G. (2022). "Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change". Scientific Reports. 12 (1). 21906. Bibcode:2022NatSR..1221906B. doi:10.1038/s41598-022-26010-7. PMC 9763247. PMID 36535995.
- ^ Greenfield, T.; Delsate, D.; Candoni, L. (2022). "Toarcibatidae fam. nov., a replacement for the unavailable name Archaeobatidae Delsate & Candoni, 2001 (Chondrichthyes, Batomorphii)". Zootaxa. 5195 (5): 499–500. doi:10.11646/zootaxa.5195.5.8. PMID 37044410. S2CID 252926330.
- ^ Cook, T. D.; Prothero, J.; Brudy, M.; Magraw, J. A. (2022). "Complex enameloid microstructure of †Ischyrhiza mira rostral denticles". Journal of Anatomy. 241 (3): 616–627. doi:10.1111/joa.13676. PMC 9358731. PMID 35445396.
- ^ Boessenecker, R. W.; Gibson, M. L. (2022). "Dermal tubercles and bucklers of gigantic stingrays (Dasyatidae) from the Pleistocene of South Carolina and the stratigraphic origin of "Ceratoptera unios" Leidy, 1877". PalZ. 96 (2): 267–273. Bibcode:2022PalZ...96..267B. doi:10.1007/s12542-021-00592-5. S2CID 246082139.
- ^ Villalobos-Segura, E.; Marramà, G.; Carnevale, G.; Claeson, K. M.; Underwood, C. J.; Naylor, G. J. P.; Kriwet, J. (2022). "The Phylogeny of Rays and Skates (Chondrichthyes: Elasmobranchii) Based on Morphological Characters Revisited". Diversity. 14 (6): Article 456. doi:10.3390/d14060456. PMC 7612883. PMID 35747489.
- ^ Perez, V. J. (2022). "The chondrichthyan fossil record of the Florida Platform (Eocene–Pleistocene)". Paleobiology. 48 (4): 622–654. Bibcode:2022Pbio...48..622P. doi:10.1017/pab.2021.47. S2CID 248255092.
- ^ Szabó, M.; Kocsis, L.; Tóth, E.; Szabó, P.; Németh, T.; Sebe, K. (2022). "Chondrichthyan (Holocephali, Squalomorphii and Batomorphii) remains from the Badenian of southern Hungary (Tekeres, Mecsek Mountains): the first deepwater cartilaginous fishes from the Middle Miocene of the Central Paratethys". Papers in Palaeontology. 8 (6). e1471. Bibcode:2022PPal....8E1471S. doi:10.1002/spp2.1471<