در فهرست زیر معادلات متداول و پر کاربرد ترمودینامیک آورده شدهاست:
بسیاری از تعاریف زیر، در ترمودینامیک واکنشهای شیمیایی نیز استفاده شدهاند.
کمیتهای پایهای عمومی[ ویرایش ] کمیت (نام رایج) نماد (رایج) یکای SI بعد تعداد مولکولها N بدون بعد بدون بعد تعداد مولها n mol [N] دما T K [Θ] گرما Q, q J [ M ] [ L ] 2 [ T ] − 2 {\displaystyle [M][L]^{2}[T]^{-2}} گرمای نهان Q L {\displaystyle Q_{L}} J [ M ] [ L ] 2 [ T ] − 2 {\displaystyle [M][L]^{2}[T]^{-2}}
متغیرهای متداول W {\displaystyle W} کار انجام شوده به وسیلهٔ سیستم بر روی محیط Q {\displaystyle Q} گرما انتقال یافته از محیط به سیستم δw Infinitesimal amount of Work δq Infinitesimal amount of Heat
S = k B ( ln Ω ) {\displaystyle ~S=k_{B}(\ln \Omega )~} ، where k B {\displaystyle k_{B}} is the ثابت بولتزمن ، and Ω {\displaystyle \Omega } denotes the volume of ریزحالت in the فضای فاز . d S = δ Q T {\displaystyle ~dS={\frac {\delta Q}{T}}~} ، برای سیستم برگشتپذیر U = N k B T 2 ( ∂ ln Z ∂ T ) V {\displaystyle ~U=Nk_{B}T^{2}\left({\frac {\partial \ln Z}{\partial T}}\right)_{V}~} S = U T + N ∗ S = U T + N k B ln Z − N k ln N + N k {\displaystyle ~S={\frac {U}{T}}+N*~S={\frac {U}{T}}+Nk_{B}\ln Z-Nk\ln N+Nk~} Indistinguishable Particles where N is number of particles, Z is the partition function , h is ثابت پلانک ، I is ممان اینرسی ، Zt is Ztranslation , Zv is Zvibration , Zr is Zrotation
Z t = ( 2 π m k B T ) 3 2 V h 3 {\displaystyle ~Z_{t}={\frac {(2\pi mk_{B}T)^{\frac {3}{2}}V}{h^{3}}}~} Z v = 1 1 − e − h ω 2 π k B T {\displaystyle ~Z_{v}={\frac {1}{1-e^{\frac {-h\omega }{2\pi k_{B}T}}}}~} Z r = 2 I k B T σ ( h 2 π ) 2 {\displaystyle ~Z_{r}={\frac {2Ik_{B}T}{\sigma ({\frac {h}{2\pi }})^{2}}}~} where:
d Q = C p d T + l v d v = d U + P d V = T d S {\displaystyle ~dQ=C_{p}dT+l_{v}d_{v}=dU+PdV=TdS~} C p = ( ∂ Q r e v ∂ T ) p = ( ∂ U ∂ T ) p + p ( ∂ V ∂ T ) p = ( ∂ H ∂ T ) p = T ( ∂ S ∂ T ) p {\displaystyle ~C_{p}=\left({\partial Q_{rev} \over \partial T}\right)_{p}=\left({\partial U \over \partial T}\right)_{p}+p\left({\partial V \over \partial T}\right)_{p}=\left({\partial H \over \partial T}\right)_{p}=T\left({\partial S \over \partial T}\right)_{p}~} C V = ( ∂ Q r e v ∂ T ) V = ( ∂ U ∂ T ) V = T ( ∂ S ∂ T ) V {\displaystyle ~C_{V}=\left({\partial Q_{rev} \over \partial T}\right)_{V}=\left({\partial U \over \partial T}\right)_{V}=T\left({\partial S \over \partial T}\right)_{V}~} نام نماد فرمول متغیرهای طبیعی انرژی درونی U {\displaystyle U} ∫ ( T d S − p d V + ∑ i μ i d N i ) {\displaystyle \int (TdS-pdV+\sum _{i}\mu _{i}dN_{i})} S , V , { N i } {\displaystyle S,V,\{N_{i}\}} انرژی آزاد هلمولتز F {\displaystyle F} U − T S {\displaystyle U-TS} T , V , { N i } {\displaystyle T,V,\{N_{i}\}} آنتالپی H {\displaystyle H} U + p V {\displaystyle U+pV} S , p , { N i } {\displaystyle S,p,\{N_{i}\}} انرژی آزاد گیبس G {\displaystyle G} U + p V − T S {\displaystyle U+pV-TS} T , p , { N i } {\displaystyle T,p,\{N_{i}\}} پتانسیل لاندو (پتانسیل بزرگ) Ω {\displaystyle \Omega } , Φ G {\displaystyle \Phi _{G}} U − T S − {\displaystyle U-TS-} ∑ i {\displaystyle \sum _{i}\,} μ i N i {\displaystyle \mu _{i}N_{i}} T , V , { μ i } {\displaystyle T,V,\{\mu _{i}\}}
See also:
K T = − 1 V ( ∂ V ∂ p ) T , N {\displaystyle ~K_{T}=-{1 \over V}\left({\partial V \over \partial p}\right)_{T,N}~} ( ∂ S ∂ U ) V , N = 1 T {\displaystyle ~\left({\partial S \over \partial U}\right)_{V,N}={1 \over T}~} ( ∂ S ∂ V ) N , U = p T {\displaystyle ~\left({\partial S \over \partial V}\right)_{N,U}={p \over T}~} ( ∂ S ∂ N ) V , U = − μ T {\displaystyle ~\left({\partial S \over \partial N}\right)_{V,U}=-{\mu \over T}~} ( ∂ T ∂ S ) V = T C V {\displaystyle ~\left({\partial T \over \partial S}\right)_{V}={T \over C_{V}}~} ( ∂ T ∂ S ) p = T C p {\displaystyle ~\left({\partial T \over \partial S}\right)_{p}={T \over C_{p}}~} − ( ∂ p ∂ V ) T = 1 V K T {\displaystyle ~-\left({\partial p \over \partial V}\right)_{T}={1 \over {VK_{T}}}~} Quantity General Equation Isobaric Δp = ۰ Isochoric ΔV = ۰ Isothermal ΔT = ۰ Adiabatic Q = 0 {\displaystyle Q=0} کار W {\displaystyle W} δ W = p d V {\displaystyle \delta W=pdV\;} p Δ V {\displaystyle p\Delta V\;} - 0 {\displaystyle 0\;} n R T ln V 2 V 1 {\displaystyle nRT\ln {\frac {V_{2}}{V_{1}}}\;} P V γ ( V f 1 − γ − V i 1 − γ ) 1 − γ {\displaystyle {\frac {PV^{\gamma }(V_{f}^{1-\gamma }-V_{i}^{1-\gamma })}{1-\gamma }}} [ ۱] = C V ( T 1 − T 2 ) {\displaystyle C_{V}\left(T_{1}-T_{2}\right)} ظرفیت گرماییC (as for real gas) C p = 5 2 n R {\displaystyle C_{p}={\frac {5}{2}}nR\;} (for monatomic ideal gas) C V = 3 2 n R {\displaystyle C_{V}={\frac {3}{2}}nR\;} (for monatomic ideal gas) انرژی درونی ΔU Δ U = C v Δ T {\displaystyle \Delta U=C_{v}\Delta T\;} Q + W {\displaystyle Q+W\;} Q p − p Δ V {\displaystyle Q_{p}-p\Delta V\;} Q {\displaystyle Q\;} C V ( T 2 − T 1 ) {\displaystyle C_{V}\left(T_{2}-T_{1}\right)\;} 0 {\displaystyle 0\;} Q = W {\displaystyle Q=W\;} − W {\displaystyle -W\;} C V ( T 2 − T 1 ) {\displaystyle C_{V}\left(T_{2}-T_{1}\right)\;} آنتالپی ΔH H = U + p V {\displaystyle H=U+pV\;} C p ( T 2 − T 1 ) {\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;} Q V + V Δ p {\displaystyle Q_{V}+V\Delta p\;} 0 {\displaystyle 0\;} C p ( T 2 − T 1 ) {\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;} آنتروپی ΔS Δ S = C v ln T 2 T 1 + R ln V 2 V 1 {\displaystyle \Delta S=C_{v}\ln {T_{2} \over T_{1}}+R\ln {V_{2} \over V_{1}}} Δ S = C p ln T 2 T 1 − R ln p 2 p 1 {\displaystyle \Delta S=C_{p}\ln {T_{2} \over T_{1}}-R\ln {p_{2} \over p_{1}}} [ ۲] C p ln T 2 T 1 {\displaystyle C_{p}\ln {\frac {T_{2}}{T_{1}}}\;} C V ln T 2 T 1 {\displaystyle C_{V}\ln {\frac {T_{2}}{T_{1}}}\;} n R ln V 2 V 1 {\displaystyle nR\ln {\frac {V_{2}}{V_{1}}}\;} Q T {\displaystyle {\frac {Q}{T}}\;} C p ln V 2 V 1 + C V ln p 2 p 1 = 0 {\displaystyle C_{p}\ln {\frac {V_{2}}{V_{1}}}+C_{V}\ln {\frac {p_{2}}{p_{1}}}=0\;} Constant {\displaystyle \;} V T {\displaystyle {\frac {V}{T}}\;} p T {\displaystyle {\frac {p}{T}}\;} p V {\displaystyle pV\;} p V γ {\displaystyle pV^{\gamma }\;}
Δ U = Q − W = Q − ∫ p e x t d V = Q − p e x t Δ V {\displaystyle \Delta U=Q-W=Q-\int p_{ext}dV=Q-p_{ext}\Delta V} H = U + p V {\displaystyle H=U+pV\,\!} A = U − T S {\displaystyle A=U-TS\,\!} G = H − T S = ∑ i μ i N i {\displaystyle G=H-TS=\sum _{i}\mu _{i}N_{i}\,\!} d U ( S , V , n i ) = T d S − p d V + ∑ i μ i d N i {\displaystyle dU\left(S,V,{n_{i}}\right)=TdS-pdV+\sum _{i}\mu _{i}dN_{i}} d H ( S , p , n i ) = T d S + V d p + ∑ i μ i d N i {\displaystyle dH\left(S,p,n_{i}\right)=TdS+Vdp+\sum _{i}\mu _{i}dN_{i}} d A ( T , V , n i ) = − S d T − p d V + ∑ i μ i d N i {\displaystyle dA\left(T,V,n_{i}\right)=-SdT-pdV+\sum _{i}\mu _{i}dN_{i}} d G ( T , p , n i ) = − S d T + V d p + ∑ i μ i d N i {\displaystyle dG\left(T,p,n_{i}\right)=-SdT+Vdp+\sum _{i}\mu _{i}dN_{i}} μ J T = ( ∂ T ∂ p ) H {\displaystyle \mu _{JT}=\left({\frac {\partial T}{\partial p}}\right)_{H}} κ T = − 1 V ( ∂ V ∂ p ) T {\displaystyle \kappa _{T}=-{\frac {1}{V}}\left({\frac {\partial V}{\partial p}}\right)_{T}} α p = 1 V ( ∂ V ∂ T ) p {\displaystyle \alpha _{p}={\frac {1}{V}}\left({\frac {\partial V}{\partial T}}\right)_{p}} ( ∂ H ∂ p ) T = V − T ( ∂ V ∂ T ) p {\displaystyle \left({\frac {\partial H}{\partial p}}\right)_{T}=V-T\left({\frac {\partial V}{\partial T}}\right)_{p}} ( ∂ U ∂ V ) T = T ( ∂ p ∂ T ) V − p {\displaystyle \left({\frac {\partial U}{\partial V}}\right)_{T}=T\left({\frac {\partial p}{\partial T}}\right)_{V}-p} H = − T 2 ( ∂ ( G / T ) ∂ T ) p {\displaystyle H=-T^{2}\left({\frac {\partial \left(G/T\right)}{\partial T}}\right)_{p}} U = − T 2 ( ∂ ( A / T ) ∂ T ) V {\displaystyle U=-T^{2}\left({\frac {\partial \left(A/T\right)}{\partial T}}\right)_{V}} نمونه ای از کاربرد روش بالا:
( ∂ T ∂ p ) H = − 1 C p ( ∂ H ∂ p ) T {\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}=-{\frac {1}{C_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}} ( ∂ T ∂ p ) H ( ∂ p ∂ H ) T ( ∂ H ∂ T ) p = − 1 {\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}\left({\frac {\partial p}{\partial H}}\right)_{T}\left({\frac {\partial H}{\partial T}}\right)_{p}=-1} ( ∂ T ∂ p ) H = − ( ∂ H ∂ p ) T ( ∂ T ∂ H ) p {\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}=-\left({\frac {\partial H}{\partial p}}\right)_{T}\left({\frac {\partial T}{\partial H}}\right)_{p}} = − 1 ( ∂ H ∂ T ) p ( ∂ H ∂ p ) T {\displaystyle ={\frac {-1}{\left({\frac {\partial H}{\partial T}}\right)_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}} ; C p = ( ∂ H ∂ T ) p {\displaystyle C_{p}=\left({\frac {\partial H}{\partial T}}\right)_{p}} ⇒ ( ∂ T ∂ p ) H = − 1 C p ( ∂ H ∂ p ) T {\displaystyle \Rightarrow \left({\frac {\partial T}{\partial p}}\right)_{H}=-{\frac {1}{C_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}} نمونههای دیگر:
C V = T ( ∂ S ∂ T ) V {\displaystyle C_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}} ‴ U = Q − W ‴ {\displaystyle '''U=Q-W\,\!'''} d U = δ Q r e v − δ W r e v ; d S = δ Q r e v T , δ W r e v = p d V {\displaystyle dU=\delta Q_{rev}-\delta W_{rev};dS={\frac {\delta Q_{rev}}{T}},\delta W_{rev}=pdV\,\!} = T d S − p d V {\displaystyle =TdS-pdV\,\!} ( ∂ U ∂ T ) V = T ( ∂ S ∂ T ) V − p ( ∂ V ∂ T ) V ; C V = ( ∂ U ∂ T ) V {\displaystyle \left({\frac {\partial U}{\partial T}}\right)_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}-p\left({\frac {\partial V}{\partial T}}\right)_{V};C_{V}=\left({\frac {\partial U}{\partial T}}\right)_{V}} ⇒ C V = T ( ∂ S ∂ T ) V {\displaystyle \Rightarrow C_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}} Atkins, Peter and de Paula, Julio Physical Chemistry , 7th edition, W.H. Freeman and Company, 2002 ISBN 0-7167-3539-3 ]. Chapters 1 - 10, Part 1: Equilibrium . Bridgman, P.W. , Phys. Rev. , 3, 273 (1914). Landsberg, Peter T. Thermodynamics and Statistical Mechanics . New York: Dover Publications, Inc. , 1990. (reprinted from Oxford University Press, 1978) . Lewis, G.N. , and Randall, M. , "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961. Reichl, L.E. , "A Modern Course in Statistical Physics", 2nd edition, New York: John Wiley & Sons, 1998. Schroeder, Daniel V. Thermal Physics . San Francisco: Addison Wesley Longman, 2000 ISBN 0-201-38027-7 ]. Silbey, Robert J. , et al. Physical Chemistry . 4th ed. New Jersey: Wiley, 2004. Callen, Herbert B. (1985). "Thermodynamics and an Introduction to Themostatistics", 2nd Ed. , New York: John Wiley & Sons.