Ariane 5 — Wikipédia

Ariane 5
Lanceur spatial lourd
Ariane 5 ECA sur son pas de tir, transportant avec lui le télescope James Webb.
Ariane 5 ECA sur son pas de tir, transportant avec lui le télescope James Webb.
Données générales
Pays d’origine Drapeau de l’Union européenne Agence spatiale européenne
Constructeur Drapeau de l’Union européenne Airbus Drapeau de la France Safran puis ArianeGroup
Premier vol
Dernier vol
Statut Retirée du service
Lancements (échecs) 117 (5)
Hauteur 55 m
Diamètre 5,4 m
Masse au décollage 780 t
Étage(s) 2
Poussée au décollage 15 120 kN
Base(s) de lancement Kourou
Charge utile
Orbite basse G : 18 t
ES : 21 t
ECA : 21 t
Transfert géostationnaire (GTO) G : 6,9 t
ES :t
ECA : 10,5 t
Motorisation
Propulseurs d'appoint 2 x EAP (propergol solide)
1er étage EPC : 1 moteur Vulcain
160 tonnes d'ergols cryogéniques LOX/LH2
2e étage ESC : 1 moteur HM-7B, 14,4 tonnes d'ergols cryogéniques LOX/LH2 (Ariane 5 ECA)

EPS : 1 moteur Aestus, 9,7 tonnes d'ergols liquides N2O4/UDMH (Ariane 5G et ES)

Missions
Satellites de télécommunications
Satellites scientifiques
Sonde spatiale
Cargo spatial

Ariane 5 est un ancien lanceur spatial lourd de l'Agence spatiale européenne (ESA), développé pour placer des satellites sur orbite géostationnaire et des charges lourdes en orbite basse. Dans sa dernière version, il peut placer 21 tonnes en orbite basse et 10,5 tonnes sur une orbite de transfert géostationnaire. Il effectue son premier vol le avec la mission V-88 et le lancement du 117e et dernier exemplaire a eu lieu le avec la mission VA-261.

Le lanceur Ariane 5 fait partie de la famille des lanceurs Ariane. Il est développé pour remplacer Ariane 4 qui ne peut plus lancer de manière concurrentielle les satellites de télécommunications dont la masse s'est fortement accrue, alors que ce segment de marché était auparavant son point fort. Ariane 5 domine jusqu'à la fin de la décennie 2010 le marché du lancement des satellites de télécommunications. Mais par la suite, il subit la concurrence de lanceurs moins coûteux (principalement le lanceur Falcon 9 partiellement réutilisable) tandis que le segment de marché pour lequel il est optimisé tend à se réduire. L'ESA décide de le remplacer par le lanceur Ariane 6 aux capacités similaires mais conçu pour être plus modulaire et disponible à un prix moins élevé.

Les industriels chargés de la construction d'Ariane 5 sont principalement le groupe aérospatial européen Airbus et le motoriste français Safran. Le lanceur comprend un premier étage cryogénique (EPC) propulsé par un moteur-fusée à ergols liquides Vulcain brûlant des ergols cryogéniques flanqué de deux propulseurs à propergol solide (EAP) qui fournissent 92 % de la poussée au décollage. Selon la version, le deuxième étage est propulsé soit par un moteur-fusée Aestus brûlant des ergols stockables soit par un propulseur à ergols cryogéniques HM-7B. Comme les précédentes fusées Ariane, Ariane 5 est lancée depuis le Centre spatial guyanais (CSG) à Kourou en Guyane .

Historique et développement

[modifier | modifier le code]

Genèse des lanceurs Ariane

[modifier | modifier le code]

L'Agence spatiale européenne, destinée à mettre en commun les moyens de onze pays européens pour soutenir une politique spatiale ambitieuse, est créée en 1975. Pour y parvenir, un accord a du être trouvé sur le financement de trois programmes majeurs qui ne sont soutenus que par certains des pays membres. La France, qui bénéficie d'une expérience relativement longue dans le domaine des lanceurs grâce à son programme de missile balistique intercontinental et le développement du lanceur léger Diamant, a obtenu qu'un lanceur européen soit développé. La maîtrise d'œuvre du projet de développement de la fusée Ariane est confiée à l'agence spatiale française, le CNES. Le marché des satellites institutionnels européens (satellites scientifiques, technologiques) étant limité, le lanceur européen est conçu dès le départ pour répondre aux besoins de lancement des satellites de télécommunications en orbite géostationnaire, qui représentent à l'époque pratiquement le seul segment commercial développé. Le lanceur Ariane 1 effectue un premier vol réussi en 1981. Pour répondre à la vocation commerciale du lanceur, le CNES crée une société dédiée à sa commercialisation, baptisée Arianespace, dont elle détient un tiers des actions. Le lanceur rencontre rapidement le succès en profitant des déboires des lanceurs américains, qui à l'époque constituent les seuls concurrents. En effet, pour rentabiliser la navette spatiale américaine, les responsables américains ont décidé de confier tous les lancements de satellites à celle-ci clouant au sol les lanceurs classiques (Atlas, Deltaetc.). Le coût prohibitif de la navette et les contraintes associées à son utilisation détournent une bonne partie des utilisateurs commerciaux vers le lanceur européen[1].

La capacité des satellites de télécommunications en orbite géostationnaire augmente régulièrement et leur masse croît en moyenne chaque année de 120 kilogrammes. Pour pouvoir continuer à lancer ces satellites beaucoup plus lourds, des versions plus puissantes du lanceur Ariane sont développées : Ariane 2 (premier vol en 1986), Ariane 3 (1984) et Ariane 4 (1988).

Les études du remplaçant de la première génération des lanceurs Ariane

[modifier | modifier le code]

En 1977, alors que la première Ariane 1 n'a pas encore volé, débutent au CNES les premières études d'un lanceur complètement différent conçu pour placer en orbite basse une petite navette spatiale de 10 tonnes emportant un équipage avec un haut niveau de fiabilité. Le lanceur envisagé comprend un premier étage similaire à celui d'Ariane 3 mais emportant 180 tonnes d'ergols, un deuxième étage cryotechnique emportant 40 tonnes d'ergols et propulsé par un moteur-fusée HM-60 de 60 tonnes de poussée et un troisième étage similaire à celui de la fusée Ariane 1. Le lanceur résultant peut placer 4,75 tonnes sur une orbite de transfert géostationnaire. Ce projet est présenté officiellement en 1979 par la direction des lanceurs. Mais une étude de l'évolution du marché spatial européen aboutit à modifier sa mission principale : l'objectif est désormais de pouvoir placer 5,5 tonnes sur une orbite de transfert géostationnaire (GTO) tandis que l'emport d'une navette spatiale devient un objectif secondaire. Le projet évolue encore pour prendre en compte les contraintes économiques et la capacité de lancement en orbite GTO est porté à 6,3 tonnes. Le lanceur doit également permettre à l'Europe de devenir autonome pour le lancement de missions avec équipage[2].

Au cours d'un colloque organisé en 1982, le CNES décrit les futurs défis auxquels doivent faire face les moyens de lancement européens : croissance du nombre et de la masse des satellites en orbite géostationnaire, simplification des infrastructures au sol, nouvelles missions en orbite : ravitaillement en ergols, dépannages, assemblage de stations spatiales, fabrication de matériaux dans l'espace. Par ailleurs, l'Europe doit à plus long terme disposer de moyens lui permettant de lancer des astronautes dans l'espace. La charge utile en orbite basse du futur lanceur est fixée à 15 tonnes. Les responsables estiment qu'une capacité supérieure ne sera que rarement utilisée et sera source d'un surcoût. On compte sur les rendez-vous spatiaux pour assembler des charges utiles plus lourdes. La capacité de lancement en orbite de transfert géostationnaire est fixée à 8 tonnes, ce qui permet de placer des satellites de 4 tonnes sur leur orbite finale. Le diamètre de la coiffe (4,8 mètres) est choisi pour permettre d'emporter des satellites dont la dimension maximale est identique à celle de la navette spatiale américaine. Des études sont effectuées par les industriels concernés. En 1984, le CNES présente aux industriels et à l'Agence spatiale européenne les résultats de ces réflexions. Trois architectures sont proposées[2] :

  • Ariane 5R est une version améliorée de l'Ariane 4 qui diffère principalement par son deuxième étage cryogénique (ergols hydrogène et oxygène liquide) H-55 propulsé par un moteur Vulcain HM-60.
  • Ariane 5P comporte un premier étage cryogénique propulsé par un moteur Vulcain HM-60 flanqué de deux gros propulseurs à propergol solide.
  • Ariane 5C est un lanceur entièrement cryogénique.

La configuration Ariane 5C est immédiatement écartée car elle nécessite de développer une structure complexe à mettre au point et son coût est trop élevé. Le CNES choisit la version 5P qui peut évoluer en allongeant l'étage central ou en développant des propulseurs d'appoint à propergol solide plus puissants. Cette version est plus chère à développer que la 5R mais elle reste rentable et sa coiffe est conçue pour permettre des lancements multiples grâce à une structure placée sous la coiffe et baptisée Speltra (Structure Porteuse Externe de Lancement Triple Ariane). Compte tenu de ses dimensions et de la cadence des vols, le nouveau lanceur nécessite la réalisation à Kourou d'un nouveau complexe de lancement, baptisé ELA-3, qui sera localisé au nord d'ELA-1. La création d'ELA-3 permet de poursuivre les lancements d'Ariane 4 durant les débuts d'Ariane 5[2].

Développement d'Ariane 5

[modifier | modifier le code]

La décision de développer l'Ariane 5P, qui doit succéder à la fusée Ariane 4, est prise par l'Agence spatiale européenne dès janvier 1985 alors qu'Ariane 4 n'a pas encore volé et que le succès des fusées Ariane dans le domaine des satellites commerciaux n'est pas encore évident. La maîtrise d'œuvre du projet est confiée au CNES Le programme est officiellement approuvé au cours de la réunion annuelle des ministres européens des Affaires spatiales de 1987 qui a lieu cette année-là à La Haye. Le nouveau lanceur Ariane 5 est un des trois composants du programme spatial habité que l'agence spatiale prévoit d'implémenter. Les deux autres composants sont une mini-navette spatiale de 17 tonnes, Hermès, et un laboratoire spatial Colombus. Alors que Ariane 4 a été optimisée pour placer des satellites en orbite géostationnaire, l'architecture retenue pour Ariane 5 a pour objectif de pouvoir lancer ces engins spatiaux très lourds en orbite basse : le premier étage et les propulseurs d'appoint sont dimensionnés de manière à pouvoir les placer sur leur orbite sans étage supplémentaire (la navette Hermès, placée sur une trajectoire suborbitale, doit toutefois, tout comme la navette spatiale américaine, utiliser sa propulsion pour se placer en orbite). Ariane 5 devant lancer des équipages, la fusée est conçue pour obtenir un taux de succès de 99 % (avec deux étages). La version tri-étages utilisée pour les satellites géostationnaires doit avoir un taux de succès 98,5 % (par construction, le taux de succès d'Ariane 4 était de 90 % mais il atteindra en fait 97 %)[3]. Pour faire face à la croissance régulière de la masse des satellites de télécommunications le lanceur devait pouvoir placer sur une orbite de transfert géostationnaire 6,8 tonnes, soit 60 % de plus que Ariane 44L, avec un coût au kilogramme réduit de 44 %.

Durant sa conception détaillée, la masse de la navette Hermès augmente régulièrement et atteint 21 tonnes. Pour que le lanceur puisse remplir son objectif la poussée du moteur principal Vulcain passe de 1 050 à 1 150 kilonewtons et plusieurs composants de la fusée sont allégés. Finalement en 1992, le développement de la navette Hermès, trop coûteux, est abandonné. Les travaux sur le lanceur sont alors trop avancés pour que son architecture soit remise en cause[3].

Vie opérationnelle

[modifier | modifier le code]

Environ 1 100 industriels participent au projet. Le premier vol, qui a lieu le est un échec. Le lanceur connaît des débuts difficiles, avec deux échecs (Vol 517 en 2002) totaux et deux échecs partiels sur les quatorze premiers lancements. mais il renoue progressivement avec les succès d'Ariane 4. En 2009, Ariane 5 détient plus de 60 % du marché mondial des lancements des satellites commerciaux en orbite géostationnaire. En , il est prévu que le dernier tir d'Ariane 5 ait lieu en 2023[4]. Le dernier vol d'Ariane 5 a effectivement lieu le [5], donnant lieu à une période d'un an (jusqu'au vol inaugural d'Ariane 6, le [6]) pendant laquelle l'Europe, dépourvue de lanceur propre, doit recourir à des lanceurs étrangers.

Principales caractéristiques des différentes versions de la famille de lanceurs Ariane[7],[8]
Caractéristiques Ariane 1 Ariane 2 Ariane 3 Ariane 4 Ariane 5 G Ariane 5 ECA Ariane 6
Dates premier et dernier vol 1979-1986 1986-1989 1984-1989 1988-2003 1996-2009 2002-2023 2024-
Lancements dont échecs 11/2 6/1 11/1 116/3 24/1 (dont 2 mises sur orbite trop basse) 84/1 (dont une mise sur orbite trop inclinée[9]) 1/0
Charge utile 1,85 t (GTO) 2,21 t (GTO) 2,72 t (GTO) 2,13 à 4,95 t (GTO) 6,9 t (GTO) 10,5 t (GTO) 12 t (A64)
4,5 t (A62) GTO
Masse totale 210 t 219 t 240 t 245 à 484 t 740-750 t 760-780 t 500-800 t
Hauteur 47,4 m 48,9 m 48,9 m 54,90 - 58,70 m 52 m 56 m 70 m
Diamètre 3,8 m 3,8 m 3,8 m 3,8 m 5,4 m 5,4 m 5,4 m
Propulsion 4 × Viking 2
1 x Viking 4
1 x HM-7
4 × Viking 2B
Viking 4B
HM-7B
4 × Viking 2B
2 × Propulseurs
1 x Viking 4B
1 x HM-7B
4 × Viking 4B
0:4 × PAP
ou 0 à 4 PAL
1 x Viking 5B
1 x HM-7B
1 x Vulcain 1
2 x EAP
1 x Aestus
1 x Vulcain 2
2 x EAP
1 x HM-7B
Vulcain 2.1
2 ou 4 P120
1 x Vinci

Caractéristiques et performances générales

[modifier | modifier le code]

Commercialisée par la société Arianespace, la fusée effectue cinq à sept lancements par an, en général doubles (deux satellites), depuis le centre de lancement de Kourou, en Guyane. Par rapport à Ariane 4, Ariane 5 est capable d’emporter des charges particulièrement lourdes en orbite basse : la version ECA, la plus récente, peut placer jusqu'à 10,73 tonnes[10] de charge utile en orbite de transfert géostationnaire et 21 tonnes en orbite terrestre basse. Ariane 5 est construite par un consortium d'entreprises européennes, placées sous la maîtrise d’œuvre d'ArianeGroup.

Ariane 5 a été développée pour franchir un saut qualitatif par rapport à Ariane 4. Il était prévu au début de sa conception qu'elle puisse mettre en orbite la navette européenne Hermès et assurer des lancements tous les quinze jours. C'est un lanceur complètement nouveau dans sa conception, à l'architecture simplifiée, et conçu pour constituer la base d'une famille évolutive, dont les performances pourront être augmentées progressivement de façon que le lanceur reste pleinement opérationnel, au moins jusqu'en 2020[11] :

  • Ariane 5 G : (Générique) Plus puissante qu'Ariane 4, elle peut placer jusqu'à six tonnes de charge utile en orbite de transfert géostationnaire. Entre le moteur Viking d'Ariane 4 et le moteur Vulcain d'Ariane 5, la poussée dans le vide est passée de 80 à 110 tonnes ;
  • Ariane 5 ECA : Peut placer 10,5 tonnes en orbite de transfert géostationnaire. Elle est équipée avec le moteur Vulcain 2 et un nouvel « étage supérieur cryotechnique A » ;
  • Ariane 5 G+ ;
  • Ariane 5 ES : Ariane 5 générique équipée d'un étage supérieur réallumable à propergol stockable (EPS).

Suivant les modèles, la capacité d’emport d'Ariane 5 se décide entre Arianespace et ses clients (en général, des grands opérateurs satellites).

Caractéristiques détaillées du lanceur

[modifier | modifier le code]
Moteur Vulcain 2.

Ariane 5 est une fusée dont la hauteur est comprise entre 47 et 52 mètres avec sa charge utile et dont la masse s'élève à environ 777 tonnes au décollage. Le diamètre de la partie centrale (sans les propulseurs d'appoint) est de 5,40 m. Le lanceur comprend un étage cryogénique central, deux propulseurs d'appoint et un étage supérieur. L'étage cryogénique (EPC) emporte 220 tonnes d'ergols liquides (hydrogène et oxygène). Les deux propulseurs d'appoint (EAP) emportent 480 tonnes de poudre (propergol solide). Ils consomment deux tonnes de poudre par seconde pendant environ deux minutes. Le lanceur atteint une vitesse supérieure à 8 000 km/h deux minutes après le décollage. Pour les lancements à destination de l'orbite géostationnaire, la vitesse à la séparation de la charge utile est de 10 km/s.

Composants du lanceur

[modifier | modifier le code]

Selon la terminologie des constructeurs de la fusée, Ariane 5 comprend :

  • le composite inférieur qui est la partie du lanceur mise à feu avant le décollage : elle comprend le premier étage cryogénique EPC et les deux propulseurs d'appoint à propergol solide EAP qui fournissent 92 % de la poussée au décollage.
  • le composite supérieur regroupe la case à équipements et l'étage supérieur à ergols hypergoliques (étage EPS) ou cryogéniques (ESC),
  • la charge utile avec sa coiffe.

Composite inférieur

[modifier | modifier le code]

Premier étage cryogénique EPC

[modifier | modifier le code]
Le premier étage cryogénique EPC dans le batiment d'assemblage.

L'« étage principal cryogénique » (EPC) est composé principalement des deux réservoirs d'ergols liquides et du moteur cryogénique Vulcain (Vulcain II pour Ariane 5 évolution (ECA)). Cet étage est mis à feu dès le décollage et assure seul la propulsion du lanceur durant la deuxième phase de vol du lanceur, après le largage des étages d'accélération à poudre. Il fonctionne en tout durant neuf minutes, pendant lesquelles il fournit une poussée de 1 350 kN pour un poids total de 188,3 t.

D'une hauteur de 30,525 m pour un diamètre de 5,458 m et une masse à vide de 12,3 t, il contient 158,5 t d'ergols, répartis entre l'hydrogène liquide (LH2 - 26 t) et l'oxygène liquide (LOX - 132,5 t). Ces réservoirs sont respectivement d'une capacité de 391 m3 et 123 m3. Ils stockent les ergols refroidis respectivement à −253 °C et −183 °C. L'épaisseur de leur enveloppe est de l'ordre de 4 mm, avec une protection thermique en polyuréthane expansé de 2 cm d'épaisseur[12].

Les deux réservoirs sont mis sous pression environ h 30 min avant le décollage avec de l'hélium. Cet hélium provient d'une sphère située à côté du moteur Vulcain. Elle est isolée thermiquement par une poche d'air. Elle contient 145 kg d'hélium, pressurisé à 19 bars au décollage puis 17 au cours du vol[12]. Cet hélium va pressuriser les réservoirs à 3,5 bars pour l'oxygène et 2,15 bars pour l'hydrogène. Au cours du vol, l'oxygène est pressurisé à 3,7 puis 3,45 bars. Le débit moyen d'hélium dans le réservoir est de l'ordre de 0,2 kg/s. L'hydrogène liquide est maintenu sous pression par de l'hydrogène gazeux. Cet hydrogène gazeux est prélevé en bas de l'étage avant le moteur, puis réchauffé et transformé en gaz (à environ −170 °C), pour être finalement réinjecté dans le réservoir d'hydrogène liquide[12]. En moyenne, cela représente un débit de 0,4 kg/s. Il y a donc tout un jeu de valves et de vannes pour commander les différentes pressions. Ce système se nomme COPV.

La turbopompe à hydrogène du moteur cryogénique Vulcain tourne à 33 000 tr/min, développant une puissance de 15 MW, soit 21 000 ch (la puissance de deux rames de TGV)[13]. Elle fait l'objet d'études très poussées sur la résistance des matériaux, et la conception des roulements et le centrage des masses en mouvement se doivent d'être les plus proches possible de la perfection. La turbopompe à oxygène tourne à 13 000 tr/min et développe une puissance de 3,7 MW. Sa conception est essentiellement axée sur l'emploi de matériaux qui n'entreront pas en combustion avec l'oxygène qu'elle brasse[13]. Le moteur Vulcain reçoit de ces pompes 200 l d'oxygène et 600 l d'hydrogène par seconde.

Propulseurs d'appoint à propergol solide EAP

[modifier | modifier le code]

Les « étages d'accélération à poudre » (EAP, ou P230) sont composés d'un tube métallique contenant le propergol solide (la poudre), réalisé dans l'usine Guyanaise REGULUS, et d'une tuyère. Les deux EAP sont identiques, ils entourent l'EPC (« étage principal cryogénique »). Ces propulseurs mesurent chacun 31 m de haut pour 3 m de diamètre. D'une masse à vide de 38 t, ils embarquent 237 t de poudre et délivrent 92 % de la poussée totale du lanceur au décollage (poussée moyenne : 5 060 kN, poussée maximale : 7 080 kN).

Comparés au moteur Vulcain de l'EPC, les deux EAP ne peuvent être éteints une fois allumés, d'où leur danger en cas de défaillance. Ils assurent le support du lanceur au sol, leur séparation du lanceur, la transmission des mesures pendant le vol et leur neutralisation, sur séparation intempestive provoquée par l'EAP ou l'EPC. Chaque EAP est équipé d'un moteur MPS, qui assure la propulsion du booster en délivrant au sol une poussée de 540 tonnes. La courbe de poussée est calculée pour minimiser les efforts aérodynamiques et optimiser les performances : elle est maximale durant les vingt premières secondes avec un long palier de 80 s[12].

L'EAP est composé de trois segments. Le segment avant S1 est fabriqué en Italie, tandis que les deux autres, S2 et S3, sont directement fabriqués en Guyane dans l'usine UPG (Usine de Propergol de Guyane)[14]. Ils sont ensuite acheminés par la route sur le fardier (une remorque à roues multiples conçue pour cet usage), depuis l'usine jusqu'au Bâtiment d'Intégration Propulseurs (BIP). Ils y sont préparés, assemblés en position verticale sur leurs palettes (dont ils resteront solidaires pendant toute la phase de préparation jusqu'au décollage), et tirés par un transbordeur (table mobile de 180 t)[12]. Ces opérations de préparation sont réalisées par la société franco-italienne Europropulsion. Le segment S1, le plus haut, mesure 3,5 m de long et contient 23,4 t de poudre. Le segment central, S2, mesure 10,17 m de long et contient 107,4 t de poudre. Le dernier segment, S3, mesure 11,1 m de long et contient 106,7 t de poudre. Il donne directement sur la tuyère, par l'intermédiaire du moteur MPS.

L'enveloppe des segments est en acier de 8 mm d'épaisseur, dont l'intérieur est recouvert d'une protection thermique à base de caoutchouc. Ils sont séparés par des lignes inter-segments d'isolation. Ces joints sont placés entre les segments[12]. Ces segments sont chargés en poudre de manières différentes, avec un creux en forme d'étoile sur le segment supérieur (S1) et une empreinte quasi cylindrique sur les deux autres segments[15]. Le chargement des segments en propergol est réalisé sous vide. La poudre contenue est composée de :

La tuyère, à la base du propulseur, est chargée d'évacuer les gaz de propulsion à raison de deux tonnes par seconde. Fixée sur le segment no 3, elle peut s'orienter à 6° et au maximum 7,3°. Elle mesure 3,78 m de long pour un diamètre de 2,99 m et une masse de 6,4 t. Elle est conçue dans un alliage métallique et composite (avec de la silice) pour résister à la très haute température dégagée. La pression de combustion dans l'EAP est de 61,34 bars[12]. Au sommet des segments de poudre, se trouve l'allumeur, mesurant 1,25 m de long pour un diamètre de 47 cm et une masse de 315 kg, dont 65 kg de poudre. Il va permettre d'allumer le propulseur d'appoint en amorçant la combustion de la poudre, qui va générer la combustion de tous les segments de manière progressive[12]. L'allumeur constitue, en lui-même, un petit propulseur. Déclenché par une charge pyrotechnique, il se comporte comme une charge relais qui allume la charge principale[15]. C'est un bloc étoilé qui donne un débit important de gaz chauds pendant une demi-seconde.

Après épuisement de la poudre, 129 à 132 s après leur allumage, ils sont séparés du lanceur à environ 70 km d'altitude pour retomber dans l'Océan Atlantique. Pour cela, on amorce huit fusées d'éloignement réparties ainsi : 4 à l'avant (en haut) et 4 à l'arrière (en bas). Ces fusées contiennent chacune 18,9 kg de poudre et fournissent entre 66 et 73 kN de poussée pendant une demi-seconde[12],[Note 1]. Si ces propulseurs sont parfois récupérés, ils ne sont toutefois jamais réutilisés, contrairement à ce qui se faisait avec les SRB de la navette spatiale.

Une version améliorée des EAP est en cours de préparation. Le , un tir d'essai sur banc de test a montré une poussée moyenne de 7 000 kN (700 t) durant 135 s[16].

Composite supérieur

[modifier | modifier le code]
Le composite supérieur comprenant la case à équipements et un étage supérieur cryogénique est gruté pour être assemblé avec le premier étage (lancement télescope spatial James Webb en 2021).

Le composite supérieur comprend la case à équipements et, en fonction de la charge utile emportée, un étage supérieur à moteur à ergols stockables (dans le cas d’une Ariane 5 avec étage supérieur EPS) ou à ergols cryogéniques (dans le cas d’une Ariane 5 avec étage supérieur ESC).

Le composite supérieur assure la propulsion du lanceur après l'extinction et le largage de l'étage EPC. Il fonctionne durant la troisième phase de vol, qui dure environ 25 minutes.

Étage supérieur EPS à ergols hypergoliques

[modifier | modifier le code]
partie inférieure de l'étage EPS avec au centre la tuyère du moteur-fusée Aestus.

Réalisé sous la responsabilité d'Astrium EADS, l'« étage à propergols stockables » (EPS, appelé plus rarement L9) a pour mission d'ajuster la satellisation des charges utiles selon l'orbite visée et d'assurer leur orientation et leur séparation. Situé à l'intérieur du lanceur, il ne subit pas les contraintes de l'environnement extérieur. Sa conception est très basique, se limitant à de simples réservoirs pressurisés dépourvus de turbopompes. Il est constitué d'une structure en nid d'abeilles, du moteur, des réservoirs, des équipements, de raidisseurs disposés en croix et de dix biellettes supportant les réservoirs d'hélium de mise en pression des réservoirs principaux.

De forme tronconique, il s'intercale entre la case à équipements et l'adaptateur de charge utile et mesure 3,356 m de haut (avec la tuyère) pour un diamètre de 3,963 m au niveau de la case à équipements. Au niveau de l'adaptateur de la charge utile, son diamètre est de 2,624 m. D'une masse à vide de 1 200 kg, il est doté de quatre réservoirs en aluminium contenant au total 9,7 tonnes d'ergols, répartis entre 3 200 kg de monométhylhydrazine (MMH) et 6 500 kg de peroxyde d'azote (N2O4).

Pressurisés par deux bouteilles en fibre de carbone gonflées à 400 bars et contenant 34 kg d'hélium, ces réservoirs alimentent un moteur Aestus (Daimler-Benz Aerospace) qui développe une poussée de 29 kN pendant 1 100 s (18 min 30 s). Sa particularité est d'être ré-allumable en vol deux fois, afin d'optimiser certaines charges utiles[12]. Sa tuyère est articulée sur deux axes (9.5°). Dans le cas de missions en orbite basse, l'allumage de l'EPS est précédé d'une phase de vol balistique, qui permet également de libérer l'orbite d'une charge utile après sa séparation.

Ce dispositif est utilisé pour la dernière fois pour la version Ariane 5 ES[17].

Étage supérieur ESC à ergols cryogéniques

[modifier | modifier le code]
Le moteur HM-7B.

L'« étage supérieur cryogénique » (ESC), haut de 4,71 mètres pour un diamètre de 5,4 mètres, a une masse à vide de (4,54 tonnes et emporte 15 tonnes d'ergols. L’ESC utilise, comme son nom l’indique, un moteur HM-7B brûlant des ergols cryogéniques (Oxygène et hydrogène liquides). Il fournit une poussée de 65 kN pendant 970 s. La poussée est non modulable et le moteur n'est pas réallumable. Le moteur haut de 2 mètres pour un diamètre maximal de 99 centimètres a une masse à vide de 165 kilogrammes. Le moteur HM-7B dérive du moteur HM-7 qui propulsait le troisième étage des lanceurs Ariane 1, 2, 3 et 4. L'étage ESC a été utilisé pour la première fois par la version ECA du lanceur Ariane 5 dont le premier vol a eu lieu en 2002[18].

Case à équipements

[modifier | modifier le code]

La case à équipements accueille le système de contrôle et de guidage du lanceur. Elle est située directement au-dessus de l'EPC dans le cas d'une Ariane 5 Générique ou en version A5E/S et entoure alors le moteur Aestus de l'EPS. Dans le cas d'une Ariane 5E/CA, la case à équipements est située au-dessus de l'ESC. La case à équipements est le véritable poste de pilotage du lanceur. Il orchestre l'ensemble des contrôles et des commandes de vol, les ordres de pilotage étant donnés par les calculateurs de bord via des équipements électroniques, à partir des informations fournies par les centrales de guidage. Ces calculateurs envoient également au lanceur tous les ordres nécessaires à son fonctionnement, tels que l'allumage des moteurs, la séparation des étages et le largage des satellites embarqués. Tous les équipements sont doublés (redondance), pour qu'en cas de défaillance de l'un des deux systèmes, la mission puisse se poursuivre.

La case à équipements mesure 5,43 m de diamètre à sa base et 5,46 m au sommet, pour permettre d'y fixer soit la structure SPELTRA (Structure Porteuse Externe pour Lancements Multiples), soit la coiffe. Sa hauteur est 1,56 m, pour une masse de 1 500 kg. L'interface avec l'EPS qui va se glisser dans l'anneau mesure au sommet 3,97 m de diamètre. L'anneau porteur sur lequel reposent les instruments mesure alors 33,4 cm de large. Voici les principaux instruments qu'il contient[12] :

  • correcteur d'attitude ;
  • systèmes de Référence Inertielle (SRI) : Ce sont des pièces maîtresses du contrôle du vol d'Ariane 5. Elles intègrent deux centrales inertielles, qui donnent la position du lanceur dans l'espace, ainsi que quatre accéléromètres, qui donnent l'accélération que subit le lanceur ;
  • calculateurs OBC (On Board Computer) : En utilisant les informations des SRI, ils commandent les moteurs du lanceur pour qu’il atteigne son objectif. Ils calculent la trajectoire de vol ;
  • unité de centrale télémesure : Unité qui traite les informations de l'ensemble des capteurs, ainsi que l'espionnage des bus SDC, à envoyer au sol[19] ;
  • antennes émettrice et réceptrice de télémesure avec les radars au sol ;
  • boîtier de commande de sauvegarde : Il commande la destruction du lanceur en cas de défaillance grave, ou sur commande de la salle de contrôle au sol ;
  • connexion électrique SPELTRA / Coiffe : interface électrique vers la coiffe ou via la SPELTRA ;
  • interface électrique avec l'EPS ;
  • éectronique séquentielle : Elle permet de bien exécuter les opérations de tir dans le bon ordre et en respectant les intervalles de temps prévues ;
  • passage ligne MMH : Trou permettant de faire passer la canalisation alimentant l'EPS en monométhylhydrazine (MMH), qui est un des combustibles utilisés ;
  • centrale de commutation : Système qui permet au calculateur de bord de basculer sur l'autre système en cas de défaillance du premier ;
  • pile et batteries ;
  • trous pour le passage de câbles vers l'EPC, la charge utile, la ventilation ;
  • système de conditionnement d'air : Permet de maintenir l'électronique de bord à une température correcte de fonctionnement ;
  • électronique de pilotage électrique ;
  • vannes d'isolement SCA : Permettent de contrôler les moteurs du système SCA ;
  • réservoirs sphériques en titane, contenant l'hydrazine pour le SCA.

La case à équipements abrite également le Système (propulsif) de Contrôle d'Attitude, plus fréquemment désigné par ses initiales SCA, qui comprend deux blocs de tuyères alimentées en hydrazine (N2H4)[12]. Elles permettent notamment le contrôle en roulis du lanceur, pendant les phases propulsées, et le contrôle d'attitude du composite supérieur, pendant la phase de largage des charges utiles[Note 2]. La durée de fonctionnement maximale spécifiée de la case est de l'ordre de 6 900 secondes, cette durée d'utilisation maximale étant généralement observée lors des missions en orbite basse. Le SCA permet également de pallier les irrégularités du moteur Vulcain, tandis qu'il permet de positionner des satellites en 3D. Il intègre deux réservoirs sphériques en titane, contenant chacun au décollage 38 litres d'hydrazine, pressurisée à 26 bars par de l'azote. Le système inclut également deux modules à trois propulseurs de 460 N de poussée (au niveau de la mer)[12].

Durant la première phase du vol, le roulis du lanceur est géré par les deux EAP, dont les tuyères orientables permettent de diriger la fusée sur tous les axes. Le lanceur ne doit pas se mettre en rotation, car il perdrait alors de l'énergie et cela entraînerait un « plaquage » des ergols de l'EPC sur leurs parois, conséquence de la force centrifuge qui ferait alors apparition. Comme les canalisations et les sondes qui mesurent la quantité d'ergols restants sont placées au milieu du réservoir, cela pourrait occasionner un arrêt prématuré des moteurs, à la suite d'un désamorçage des turbopompes. Ce cas de figure s'est déjà produit sur le deuxième vol de qualification de la fusée (vol 502)[12].

Une fois les EAP largués, il ne reste plus qu'un seul moteur, le Vulcain, et il n'est donc alors plus possible de jouer sur l'inclinaison des tuyères pour stopper le roulis de la fusée. C'est là que le SCA trouve toute son utilité, car avec ses trois propulseurs, il va pouvoir stopper cette rotation. Ces trois moteurs sont braqués de la manière suivante : un vers la droite, un vers la gauche, et le dernier vers le bas. À la suite de l'échec du vol 502, il fut déterminé que le nombre de propulseurs n'était pas suffisant pour contrer le phénomène et les responsables ont préféré prendre leurs précautions en renforçant le système : dorénavant, le système contient six sphères et dix propulseurs, ce qui porte par ailleurs la masse totale de la case à équipements à 1 730 kg[12].

Charge(s) utile(s)

[modifier | modifier le code]
Ariane 5 comparée à[20],[21],[22],[23],[24],[25],[26]
Charge utile
Lanceur Masse Hauteur Orbite
basse
Orbite
GTO
Drapeau de l’Union européenne Ariane 5 ECA 777 t 53 m 21 t 10,5 t
Drapeau de la République populaire de Chine Longue Marche 5 867 t 57 m 23 t 13 t
Drapeau des États-Unis Atlas V 551 587 t 62 m 18,5 t 8,7 t
Drapeau des États-Unis Delta IV Heavy 733 t 71 m 29 t 14,2 t
Drapeau des États-Unis Falcon 9 FT 549 t 70 m 23 t 8,3 t
Drapeau de la Russie Proton-M/Briz-M 713 t 58,2 m 22 t t
Drapeau du Japon H-IIB 531 t 56,6 m 19 t t
Drapeau des États-Unis Falcon Heavy 1 421 t 70 m 64 t 27 t[Note 3]

La charge utile est constituée des satellites qui doivent être placés sur orbite. Pour permettre les lancements de plusieurs satellites, ceux-ci sont disposés sous la coiffe dans un module SPELTRA (Structure Porteuse Externe pour Lancements Multiples) ou SYLDA (SYstème de Lancement Double Ariane). Fonctionnant un peu comme une étagère, ces modules permettent de placer en orbite deux satellites distincts, l'un après l’autre : un des satellites est positionné sur le module SPELTRA/SYLDA, l'autre à l'intérieur.

Les charges utiles et le séparateur sont largués durant la quatrième phase de vol : la phase balistique. Selon les caractéristiques de la mission, les largages peuvent être faits immédiatement ou plusieurs dizaines de minutes après le début de cette phase. Les actions effectuées sont des mises en rotation, des éloignements, etc.

Dans le cas d'un lancement simple, le satellite est directement placé sur l'EPS, mais lorsqu'il s'agit d'un lancement double, le satellite du bas est installé sous la cloche formée par la SPELTRA ou le SYLDA et le deuxième satellite vient ensuite prendre appui sur la structure porteuse. Toutes les interfaces de charge utile utilisent un diamètre de 2,624 m, qu'elles soient sur l'EPC ou les modules de lancement multiples. Les installations de satellites peuvent donc parfois nécessiter l'emploi d'adaptateurs de charge utile, s'ils ne peuvent pas utiliser directement ce diamètre pour être installés dans la coiffe. Afin d'améliorer l'offre commerciale proposée par le lanceur, trois adaptateurs seront développés, contenant des interfaces d'un diamètre compris entre 93,7 cm et 1,666 m, et supportant des charges utiles d'une masse allant de 2 à 4,5 tonnes. Ils incluront les boulons de fixation, les ressorts du système de séparation et un système d'alimentation électrique pour le satellite concerné[12].

Représentation en coupe de la partie supérieure d'une fusée Ariane 5. En bas, sous les deux satellites, l'étage supérieur cryotechnique (ESC) et son moteur HM-7 (tuyère métallique sous la partie verte). La partie noire en forme de cloche qui sépare les deux satellites est la structure SYLDA.

La SPELTRA est une structure en nid d'abeilles de forme cylindrique avec une partie supérieure tronconique (6 panneaux). Construite en composite de type « carbone-résine » d'une épaisseur de 3 cm, elle comporte de une à six portes d'accès et une prise ombilicale pour relier la charge utile au mât de lancement. Elle est utilisée depuis le premier vol d'Ariane 5.

Contrairement au SYLDA, qui est logé dans la coiffe, la SPELTRA se place entre la case à équipements et la coiffe, comme c'était déjà le cas pour la SPELTRA d'Ariane 4. Elle a donc un diamètre extérieur de 5,435 m, pour un diamètre intérieur de 5,375 m. La partie inférieure se pose sur la case à équipements, tandis que la partie supérieure cylindrique sert de cadre de liaison pour la coiffe. La partie tronconique sert d'adaptateur pour les charges utiles.

Elle existe en deux versions[12] : une courte et une longue. La première mesure 4,16 m, auxquels s'ajoutent les 1,34 m de la partie conique coupée en haut, ce qui donne une hauteur totale de 5,50 m, pour une masse de 704 kg. De la même manière, la grande version mesure 7 m de haut pour une masse de 820 kg.

De sa vraie désignation SYLDA 5, cette structure est interne à la coiffe, et ne la soutient pas, contrairement à la SPELTRA. Conçue par le groupe industriel Daimler-Benz Aerospace, elle mesure 4,903 m de haut pour une masse de 440 kg.

Le cône du bas mesure 59,2 cm d'épaisseur pour un diamètre à la base de 5,435 m. Il est surmonté par la structure cylindrique, d'un diamètre de 4,561 m pour une hauteur de 3,244 m, qui est elle-même surmonté par un cône de 1,067 m avec un diamètre final de 2,624 m au niveau de la zone d'interface avec la charge utile.

Le SYLDA 5 a été utilisé pour la première fois lors du 5e vol d'Ariane 5 (vol V128) en (satellites Insat 3B et AsiaStar)[12],[27].

La coiffe utilisée pour le lancement du télescope spatial JWST.

La coiffe protège les charges utiles durant le vol dans l'atmosphère et est larguée dès qu'elle n'est plus utile, afin d'alléger le lanceur. Ce largage est effectué peu après la séparation des EAP, à une altitude d'environ 106 km, 202,5 s après le décollage[12].

C'est une structure d'un diamètre extérieur de 5,425 m pour un diamètre intérieur utile de 4,57 m. Elle existe en deux longueurs : la « courte », mesurant 12,728 m de haut pour une masse de 2 027 kg, et la « longue », mesurant 17 m de haut pour une masse de 2 900 kg[12]. Elle est équipée d'une prise ombilicale électrique pour relier la charge utile au mât et d'une prise pneumatique pour le confort satellite, d'une porte d'accès de 60 cm de diamètre et d'une protection acoustique, constituée d'un assemblage de boudins en plastique absorbant les vibrations. 1 200 résonateurs, installés sur 74 panneaux à base de mousse polyamide, recouvrent la paroi interne sur 9,3 m. Le bruit présent à l'intérieur reste toutefois d'un niveau très élevé, atteignant plus de 140 décibels, ce qui est au-delà du maximum supportable par une oreille humaine. Ce bruit se manifeste essentiellement dans les basses fréquences. La coiffe courte a été utilisée depuis le 1er vol et la version longue à partir du 11e, en (vol V145). La coiffe est fabriquée en Suisse par la société RUAG Space.

Versions du lanceur fabriquées

[modifier | modifier le code]

Plusieurs versions du lanceur ont été fabriquées. Seule la version ECA est utilisée depuis 2018.

Coupe verticale de la fusée Ariane 5 GS.

Seize lanceurs Ariane 5 G (pour « générique ») ont été lancés entre le et le .

Ariane 5 G+

[modifier | modifier le code]

Cette version d'Ariane 5 G a un second étage amélioré, avec une charge possible de 6 950 kg. Trois lanceurs de ce type ont été tirés, entre le et le .

Ariane 5 GS

[modifier | modifier le code]

Cette version dispose des mêmes EAP que l'Ariane 5 ECA et d'un premier étage modifié avec un moteur Vulcain 1B. Charge possible de 6 100 kg en orbite de transfert géostationnaire (GTO). Six tirs ont eu lieu entre le et le .

Ariane 5 ES

[modifier | modifier le code]

Cette version est conçue pour placer en orbite basse le vaisseau cargo ATV, ravitaillant la Station spatiale internationale. Elle peut lancer jusqu'à 21 t de charge utile sur cette orbite.

Ariane 5 ES réalise trois allumages de son étage supérieur, pour répondre aux besoins très spécifiques de la mission[28]. Par ailleurs, ses structures ont été renforcées pour soutenir la masse imposante de l'ATV (20 tonnes)[29]. Huit tirs ont eu lieu entre le et le .

Son premier lancement a eu lieu le .

Afin d'accélérer le déploiement de la constellation Galileo, Arianespace annonce, le , le lancement de 12 satellites par 3 tirs du lanceur Ariane 5 ES. Ils seront lancés par quatre à partir de 2015[35],[36]. Ce programme a été achevé le .

Ariane 5 ECA

[modifier | modifier le code]
Coupe verticale de la fusée Ariane 5 ECA.

Ariane 5 ECA, aussi appelée Ariane 5 « 10 tonnes », en référence à sa capacité proche de dix tonnes de mise en orbite de transfert géostationnaire comporte un premier étage EPC motorisé par le Vulcain 2, plus puissant que le Vulcain 1, et son second étage ESC utilise le moteur cryotechnique HM-7B, déjà utilisé pour le troisième étage d'Ariane 4.

Depuis fin 2009, c'est la seule version utilisée pour lancer des satellites commerciaux. Elle a été tirée 84 fois[38] et n'a connu qu'une défaillance, lors du vol V157 (1er tir) le [39],[40].

Le 26 novembre 2019 marque, avec le 250e vol d'une Ariane, les 40 ans d'exploitation du lanceur depuis le .

Le à h 20 UTC un lanceur Ariane 5 a placé le télescope James Webb sur une trajectoire vers le point de Lagrange L2 du système Soleil-Terre[41].

Les limites de la version ECA

[modifier | modifier le code]

Ariane 5 peut rester concurrentielle tant qu'elle peut lancer deux satellites commerciaux en orbite géostationnaire. Malheureusement, la croissance du poids des satellites géostationnaires pourrait remettre en question la position bien établie du lanceur sur ce segment. Le satellite TerreStar-1 (6,7 tonnes au lancement) a établi un nouveau record de masse, mais le lanceur Ariane 5 chargé de le placer en orbite n'a pu effectuer de lancement double, et le prix du lancement a dû être acquitté par le seul opérateur de TerreStar-1. Si cette situation se généralisait, les lanceurs aux capacités plus faibles et optimisés pour un lancement simple, comme Proton-M, d'ILS, et Zenit-3 pourraient devenir plus concurrentiels qu'ils ne le sont actuellement[42].

Le deuxième étage d'Ariane 5 ne peut pas être ré-allumé, contrairement à ceux des lanceurs russes Zenit et Proton, qui utilisent cette technologie depuis plusieurs décennies. Les orbites de certains satellites nécessitent cette capacité. C'est ainsi que le lancement, le , d'un satellite militaire italien (Sicral 1B) a été confiée au lanceur russo-ukrainien Zenit-3, et non à une fusée européenne.

La version ME (Midlife Evolution) annulée

[modifier | modifier le code]

Pour pallier ces limitations, il était prévu de développer une version ME, initialement appelée Ariane 5 ECB. Celle-ci devait comporter un nouvel étage supérieur cryotechnique et réallumable, qui devait utiliser un nouveau moteur Vinci plus puissant, en cours de développement chez Snecma (Safran). Grâce à cet étage, Ariane 5 ME aurait alors été capable de lancer jusqu'à 12 tonnes de charge utile en orbite de transfert géostationnaire (GTO)[43]. Le premier vol était prévu en 2017 ou 2019[44].

Le développement de cette version, avec un financement pour deux ans jusqu'en 2014, décidé lors de la session ministérielle du Conseil de l'ESA en [45], n'est plus d'actualité, elle est remplacée par la future Ariane 6.

Charge utile des principales versions en fonction de la destination[46]
Version Ariane 5 G Ariane 5 ECA Ariane 5 ME
Station spatiale internationale (t) 19,7 18,3 23,2
Orbite de transfert géostationnaire (t) 6,6 10,5 12
Injection vers la Lune (t) 5 7,8 10,2
Orbite lunaire (t) 3,6 5,65 7,45
Sol lunaire à l'équateur (masse charge utile) (t) 1,8 (0,9) 2,8 (1,4) 3,7 (1,8)
Sol lunaire au pôle (masse charge utile) (t) 0,9 (0,4) 1,4 (0,7) 1,85 (0,9)
Injection vers orbite martienne (t) 3,25 5,15 8
Orbite martienne (t) 2,25 3,6 5,6

Caractéristiques techniques détaillées des différentes versions de la fusée Ariane 5

[modifier | modifier le code]

Les installations d'assemblage et de lancement

[modifier | modifier le code]
Plan détaillé des installations destinées à la préparation et au lancement des lanceurs Ariane 5 (ELA 3) et Vega (ELV).

La fusée Ariane 5 est lancée depuis le Centre spatial guyanais, construit par le CNES en Guyane française (Amérique du Sud) près de la ville de Kourou. Des installations adaptées à Ariane 5 ont été construites sur cette base qui a lancé les versions précédentes du lanceur Ariane.

L'ensemble de lancement de la fusée Ariane 5 (ELA-3, acronyme d'Ensemble de Lancement Ariane 3), qui occupe une superficie de 21 km2, est utilisé pour lancer les fusées Ariane 5 et a été de 2003 jusqu'en 2009 le seul site actif après l'arrêt des lancements d'Ariane 4. Il comprend :

  • Un bâtiment (S5) dans lequel sont préparés les satellites (vérification et chargement en ergols) ;
  • le bâtiment d'intégration lanceur (BIL Schéma : 4) dans lequel sont assemblés verticalement sur la table de lancement les éléments des lanceurs Ariane 5 (propulseurs à poudre (EAP), étage principal cryogénique (EPC), étage supérieur (EPS ou ESC) ainsi que la case à équipements). Cette dernière se déplace sur une double voie ferrée pour aller d'un site d'assemblage à un autre et est équipée d'un mât qui la connecte à la fusée et maintient la fusée durant ses déplacements. Les propulseurs à poudre proviennent du bâtiment d'intégration des propulseurs (BIP) dans lequel ils ont été assemblés.
  • le bâtiment d'assemblage final (BAF Schéma : 5) de 90 mètres de haut dans lequel sont assemblés les satellites, l'adaptateur, la coiffe et la fusée.
  • la zone de lancement (ZL Schéma : 6) est éloignée des bâtiments précédents pour limiter l'impact d'une explosion du lanceur durant la phase de décollage.
  • Le centre de lancement (CDL 3 Schéma : 7) en partie blindé (en particulier le toit).

Les bâtiments d'assemblage (BIL, BAF) ainsi que la zone de lancement sont reliés par une double voie ferrée sur laquelle circule la table de lancement mobile portant la fusée. L'aménagement permet huit lancements par an[47].

Aire de lancement d'Ariane 5 à Kourou.
Ariane 5 quitte le bâtiment d'assemblage.
Centre de contrôle.
Décollage d'une Ariane 5 ES avec l'ATV 4.
Le lancement du .

Une partie du lanceur Ariane 5 est fabriquée sur place. Une unité de production fabrique et coule le propergol solide de deux des trois segments de chaque propulseur à poudre (EAP) de la fusée (le troisième est coulé en Italie). Le site dispose d'un banc d'essai pour les EAP[14].

Le centre Jupiter est le centre de contrôle qui permet de piloter l'ensemble des opérations de préparation et de lancement.

Déroulement d'un lancement

[modifier | modifier le code]

Campagne de lancement

[modifier | modifier le code]

Les principaux éléments constitutifs des fusées sont produits en Europe et transférés à Kourou par bateau. À leur arrivée, débute la « campagne de lancement » qui dure environ un mois et demi. Elle consiste à assembler les éléments du lanceur (étages, boosters, case à équipements) dans le bâtiment d'intégration lanceur (BIL), opération réalisée par ArianeGroup. Ensuite le lanceur et les satellites des clients sont regroupés dans le bâtiment d'assemblage final (BAF) avant transfert à J-1 sur la base de lancement Ariane (BLA)[48].

Production des moteurs à propergol solide et banc d'essais

[modifier | modifier le code]

Les propulseurs d'appoint de la fusée Ariane 5 (EAP) sont en partie réalisés au CSG dans la zone de production des propulseurs (Schéma : 1) qui occupe 300 hectares et comprend 40 bâtiments. Sont réalisés la fabrication et le chargement du propergol solide coulé à la verticale, les contrôles non destructifs et le stockage des segments chargés. L'usine de propergol de Guyane (UPG) fabrique et charge le combustible solide de deux des trois segments de chaque propulseur à poudre EAP (le troisième est coulé en Italie) et le segment unique des propulseurs à poudre P120C. L'enveloppe des propulseurs est par contre fabriquée en Europe. Le site dispose également d'un banc d'essais. Dans le Bâtiment Basculement Propulseur (BBP), les propulseurs P120C sont basculés de la position verticale à la position horizontale pour permettre leur intégration dans le Bâtiment d’Intégration des Propulseurs (BIP) : les boosters P120C y sont intégrés à l’horizontale dans une des deux cellules de préparation construites pour Ariane 6 et Vega C contrairement aux trois segments des EAP d'Ariane 5 qui y sont intégrés à la verticale. La tuyère du propulseur est installée. La réalisation des blocs de propergol est réalisée par la société Regulus tandis que l'assemblage est pris en charge par Europropulsion[49],[50].

Séquence de lancement

[modifier | modifier le code]

Le décollage de la fusée est autorisé si l'ensemble des éléments sont « nominaux ». À compter de H - 7 min, un ordinateur gère l'ensemble des paramètres de façon automatique (séquence synchronisée). Lorsque le moteur Vulcain 2 est mis en route (fin du compte à rebours H 0), un délai de 7,3 secondes permet de vérifier le bon fonctionnement de celui-ci et ce n'est qu'à ce moment que les EAP (boosters) sont allumés et que la fusée décolle réellement. Le service sauvegarde, constitué d'une équipe de quatre personnes, contrôle le bon déroulement du lancement et est habilité à détruire la fusée en cas d'événement inattendu en respect des procédures prévues. Un détachement de la brigade de sapeurs-pompiers de Paris comprenant une cinquantaine de personnes est chargé d'intervenir sur les éventuels incendies et de sécuriser le site de lancement après un décollage[51].

  • À J-2, après une vérification complète des systèmes et une réunion de préparation du transfert la RAL (Revue d'Aptitude au Lancement), la fusée est acheminée en position verticale sur la zone de lancement no 3, à 2,8 km de distance. Le lanceur, posé sur une grande « table », est tracté par un véhicule spécialement conçu, à une vitesse variant entre 3 et 4 km/h.
  • Arrivé sur site, le lanceur est connecté à la tour de lancement, alimentation en hydrogène, oxygène, électrique, etc.
  • La chronologie finale débute 9 heures avant le H0 prévu.
  • H0 - 7h30 : Contrôle de l'alimentation électrique, des appareils de mesure et de commande. Vérification de la connexion entre la salle de contrôle et le lanceur. Nettoyage des réservoirs pour les ergols et début du refroidissement. (le réservoir doit être à la même température que celui du pas de tir)
  • H0 - 6h : La zone de lancement passe en configuration finale. Les portes sont fermées et verrouillées (la salle de contrôle est un bunker isolé). Contrôle des circuits de remplissage. La partie communication fusée / sol est testée et le programme de vol est chargé dans les deux calculateurs de bord.
  • H0 - 5h : Afin de commencer le remplissage, tout le personnel quitte la zone de lancement. Le remplissage se constitue de 4 étapes ;
    1. Pressurisation du véhicule de stockage transportant les ergols
    2. Mise en froid du circuit véhicule / lanceur
    3. Remplissage
    4. Contrôle : les ergols étant volatils, la pression est constamment contrôlée et régulée.

Le taux de remplissage exact des ergols est déterminé en fonction de la masse de la charge utile, de l'orbite visée et de la trajectoire afin d'optimiser la probabilité de réussite de la mission.

Durant cette phase, on met aussi les systèmes hydrauliques sous pression, afin de tester le circuit.

  • H0 - 3h20 : Mise en froid du moteur Vulcain.
  • H0 - 30 minutes : Contrôle automatique puis manuel des installations, depuis le centre de contrôle.
  • H0 - 6 min 30 s : Début de la séquence synchronisée. Cette séquence est automatique mais peut être stoppée à tout moment par le directeur de vol. On arrête le remplissage complémentaire des réservoirs et les vannes de sécurité d'arrosage du pas de tir sont ouvertes, provoquant un déluge d'eau sur le pas de tir afin de le refroidir et d'amortir les vibrations. Enfin, on arme le système de destruction de la fusée.
  • H0 - 4 min 30 s : Pressurisation des réservoirs, en y injectant de l'hélium à haute pression afin de permettre un écoulement optimal du combustible. Purge du circuit de remplissage du pas de tir et déconnexion fusée / sol.
  • H0 - 3 min 30 s : Envoi de l'heure du lancement (H0) dans les calculateurs de bord, le second calculateur passe en veille active. Ainsi, si le 1er système présentait une anomalie, le basculement sur le second serait quasiment instantané.
  • H0 - 2 min : Alimentation du moteur Vulcain en combustible, la mise en froid s'arrête. Le combustible maintient naturellement la température dans le réacteur.
  • H0 - 1 min : L'alimentation électrique de l'EPC passe sur les batteries de bord.
  • H0 - 50 s : L'alimentation de tout le lanceur passe sur les batteries, on coupe l'alimentation depuis le sol. La fusée est maintenant en autonomie complète.
  • H0 - 37 s : Démarrage des enregistreurs de vol (boîtes noires de la fusée). Armement du système de destruction de la fusée et mise en attente de celui-ci.
  • H0 - 30 s : Contrôle des vannes sol / fusée et inondation du pas de tir depuis le château d'eau du pas de tir, afin de le refroidir et d'atténuer les vibrations.
  • H0 - 22 s : Activation du système de pilotage et début de la procédure de correction de trajectoire, la fusée s'autocontrôle totalement.
  • H0 - 12 s : Contrôle de la pression dans les réservoirs.
  • H0 - 10 s : Début de la séquence irréversible. Dorénavant, le directeur de vol ne peut plus annuler la mise à feu.
  • H0 - 6 s : Mise à feu des charges d'allumage du moteur Vulcain.
  • H0 - 5.5 s : Le système de communication lanceur / sol direct est déconnecté, passage en mode radio.
  • H0 - 3 s : Programme de vol activé, centrales inertielles en mode « vol ». Les calculateurs contrôlent l'intégralité des actionneurs du lanceur et de ses paramètres de vols.
  • H0 - 2 s : Allumage moteur Vulcain.
  • H0 + 6.9 s : Contrôle d'anomalies du moteur Vulcain. Si des anomalies sont détectées, les EAP ne seront pas allumés, car une fois que cette action est entreprise elle est irréversible.
  • H0 + 7.05 s : Allumage des 2 EAP.

Déroulement du vol

[modifier | modifier le code]
Schéma de lancement d'une Ariane 5 ECA, ici le vol no 183. On distingue bien la phase de vol balistique.
  • Les EAP vont fournir une poussée pendant 1 minute 30 à 2 minutes, permettant de mettre la fusée hors atmosphère terrestre. Ils vont ensuite se détacher du corps principal grâce à des systèmes pyrotechniques.
  • La coiffe (protection de la tête) de la fusée se détache après la sortie de l'atmosphère car elle devient alors inutile. Son largage soulage le lanceur d'une masse de 2 à 3 tonnes.
  • Le moteur Vulcain 2 continue sa poussée pendant encore 6 minutes, puis va être détaché à son tour ainsi que ses réservoirs, laissant le rôle au deuxième étage.
  • La propulsion s'effectue pendant une quinzaine de minutes avant de s'éteindre. La fusée, ou plutôt la charge utile, continue son vol balistique et déploie alors les satellites en orbite géostationnaire.

Sur le modèle Ariane 5ES ATV, la dernière phase comporte trois réallumages successifs.

Historique des lancements

[modifier | modifier le code]
Nombre de vols Ariane 5 par version du lanceur
1
2
3
4
5
6
7
8
1996
2000
2004
2008
2012
2016
2020
2023

 G   G+   GS   ECA   ES

Nombre de vols en fonction de leur succès
1
2
3
4
5
6
7
8
1996
2000
2004
2008
2012
2016
2020
2023

  Succès    Échec    Échec partiel  

Échecs lors des premiers vols

[modifier | modifier le code]

La phase de mise au point du lanceur Ariane 5 fut caractérisée par plusieurs échecs. La fiabilisation du lanceur nécessita un important effort financier, réalisé au détriment du développement de versions plus puissantes.

Premier vol (vol 88 / 501)

[modifier | modifier le code]

Le premier tir eut lieu le à Kourou, mais le lanceur fut détruit après 37 secondes de vol. L'échec était dû à une erreur informatique, intervenue dans un programme de gestion de gyroscopes conçu pour la fusée Ariane 4, et qui n'avait pas été testé dans la configuration d'Ariane 5[52]. Le défaut informatique avait pris sa source dans une erreur de transcription de spécifications. Lors des échanges entre l'ESA et le fabricant de la centrale inertielle (dite également IRS), les spécifications fonctionnelles ont été recopiées plusieurs fois et c'est lors de ces recopies qu'une erreur fut introduite. Les spécifications initiales définissaient une durée maximum admissible de 60 secondes pour l'alignement du gyroscope. La durée d'alignement est le temps qu'il faut pour qu'un gyroscope atteigne sa vitesse de rotation opérationnelle, et permette ainsi de situer l'objet et son orientation dans l'espace. Lors des recopies successives cette durée de 60 secondes est passée à 80 secondes,[réf. nécessaire] valeur erronée provoquant un dysfonctionnement du programme chargé de gérer les données gyroscopiques.

Il existait une méthode de gestion de cette erreur, mais cette dernière avait été désactivée pour améliorer les performances du système[réf. nécessaire] sur Ariane 4, considérant que sur ce modèle on pouvait prouver que l'occurrence du dépassement qui allait être produit par le programme était nulle compte tenu des trajectoires de vol possibles. Or les spécifications d'Ariane 5, notamment en phase de décollage, diffèrent notablement de celles d'Ariane 4. Le programme de la centrale inertielle, bien que redondant, produisit deux dépassements de trajectoire et finit par signaler la défaillance des systèmes gyroscopiques. Le calculateur de pilotage de la fusée (spécifiquement mis au point pour Ariane 5), en interprétant les valeurs d'erreurs (probablement négatives) fournies par le second gyroscope, déduisit que la fusée s'était mise à pointer vers le bas. La réaction du calculateur de pilotage fut de braquer les tuyères au maximum pour redresser la fusée, ce qui augmenta considérablement l'incidence du lanceur et provoqua des efforts aérodynamiques qui le détruisirent[53]. Il s'agit certainement là de l'une des erreurs informatiques les plus coûteuses de l'histoire (500 millions de dollars)[54],[55].

Il a été souligné que le programme de gestion d'alignement gyroscopique, source de l'accident, était totalement inutile. Il était en effet conçu pour réajuster rapidement le calibrage des gyroscopes dans le cas d'un court retard de tir (de l'ordre de quelques minutes), afin de permettre une reprise rapide du compte à rebours – par exemple en raison de variations rapides des conditions météo du site de lancement à Kourou. Or ce cas de figure, envisagé initialement pour Ariane 3, était depuis longtemps exclu des procédures de tir.

Deuxième vol (vol 101 / 502)

[modifier | modifier le code]

Le second vol eut lieu le .

La mission parvint à son terme mais l'orbite désirée ne fut pas atteinte, par suite d'un mouvement de rotation du lanceur sur lui-même (mouvement de roulis, comme une toupie) qui a conduit à un arrêt prématuré de la propulsion du premier étage EPC. Après cette fin de propulsion du premier étage, et malgré la mise en route correcte de l'étage supérieur EPS, celui-ci n'a pas pu rattraper l'intégralité du déficit de poussée de la première phase du vol, conduisant donc la mission sur une orbite légèrement dégradée.

Ce mouvement en roulis était dû à un couple généré par l'écoulement des gaz dans la tuyère du moteur Vulcain 1, couple dont l'intensité avait été sous-estimée. Dès lors, et malgré la mise en œuvre du système de pilotage en roulis SCA, le lanceur a subi durant tout le vol du premier étage une mise en rotation excessive. Cette mise en rotation aurait pu n'avoir que peu de conséquences, les algorithmes de vol – relativement efficaces – contrôlant malgré tout la trajectoire. Cependant, en fin de propulsion, et sous l'effet de la vitesse en roulis atteinte, la surface des ergols (oxygène et hydrogène liquides) dans les réservoirs s'est incurvée en son centre (à la manière d'un siphon, lorsque le liquide se plaque contre les parois). Ce phénomène a été interprété par les capteurs de niveau (« jauges » des réservoirs) comme l'indication de l'imminence d'une « panne sèche », ce qui a conduit l'ordinateur de bord à commander l'arrêt de propulsion de l'EPC prématurément.

Le couple en roulis généré par le moteur Vulcain 1 fut maîtrisé dès le vol suivant par la mise en place, en extrémité, de divergents d'échappement légèrement inclinés corrigeant le roulis naturel engendré par le moteur. Les responsables de la conception d'Ariane 5 ont tout de même préféré prendre leurs précautions en renforçant le système SCA : il contient désormais six sphères de propergol et dix propulseurs de contrôle, au lieu des trois propulseurs du début.

Ce problème a touché d'autres lanceurs, dont le H-IIA japonais.

Échecs lors de vols commerciaux

[modifier | modifier le code]

Aux deux premiers échecs de début de carrière s'ajoutent ceux survenus sur des vols commerciaux, en 2001, 2002 et 2018.

Dixième vol (vol 142 / 510)

[modifier | modifier le code]

Sur ce vol, effectué le , pas de panne franche ni d'erreur de pilotage. Le problème vient du moteur du dernier étage qui a fonctionné moins longtemps (1 minute et 20 secondes de moins) et avec une puissance inférieure de 20 % à celle qui avait été prévue[56], ne permettant pas d'atteindre la vitesse nécessaire à l'injection visée (apogée à 18 000 km au lieu de 36 000 km). Ce vol est un demi-échec, car la satellisation a été réussie, mais avec des paramètres d'injection qui n'étaient pas optimaux.

La cause semble être la présence d'eau résiduelle dans l'infrastructure du moteur, provenant de tests réalisés au sol[56]. Mélangée au carburant, elle aurait entraîné une baisse notable de la puissance et une surconsommation de l'un des ergols, ce qui pourrait expliquer la perte de puissance et l'arrêt prématuré.

Pour combler ces différences, le satellite Artemis a utilisé sa propre propulsion afin d’atteindre son orbite géostationnaire cible. Il a été reconfiguré à distance pour atteindre sa position souhaitée, par le biais d'une nouvelle procédure. D'abord par une série de mises à feu, utilisant la plus grande partie de son carburant, pour le mettre sur une orbite circulaire plus élevée. Puis par ses moteurs ioniques, prévus initialement seulement pour corriger son orbite, grâce à une trajectoire en spirale, qui lui a fait gagner 15 km par jour et atteindre, en 18 mois, son altitude de 36 000 km[57]. Le second satellite, BSAT 2B a, lui, été définitivement perdu car il ne possédait pas les ressources suffisantes pour combler cette différence d'orbite.

Dix-septième vol (vol 157 / 517)

[modifier | modifier le code]

Le , ce vol inaugural de la version ECA d'Ariane 5 s'est terminé dans l'océan Atlantique, à la suite d'une défaillance du moteur Vulcain 2, équipant l'étage principal de la fusée[40].

Une fuite dans le système de refroidissement a entraîné une déformation de la tuyère, ce qui a créé un déséquilibre dans la poussée du moteur et rendu le lanceur impossible à piloter. Face à une perte de contrôle insurmontable par la fusée, le contrôle au sol a pris ses précautions et commandé la destruction de la fusée en vol. Les deux satellites français de télécommunications présents à bord, Hot Bird 7 et Stentor, ont été détruits, représentant une perte totale de 640 millions d'euros.

Quatre-vingt-dix-septième vol (vol 241 / 5101)

[modifier | modifier le code]

Le décollage a eu lieu comme prévu le à 22 h 20 UTC, mais à la 9e minute, peu après la séparation du 1er étage, alors que la fusée se trouvait dans l'espace, les différentes stations au sol n'ont pas reçu les signaux de télémesure du second étage, qui est resté « muet » pendant 28 minutes, jusqu'à la fin de la mission.

L'origine de l'incident est une erreur humaine. Des paramètres de vol erronés ont été programmés dans l'ordinateur de bord de la fusée. La station au sol de Galliot, suivant la fusée depuis le décollage, a constaté la déviation de la trajectoire. Les stations suivantes, pointant leurs antennes sur la trajectoire prévue, n'ont pu établir le contact. La mission s'est poursuivie jusqu'à son achèvement de façon entièrement automatique[58].

Les deux satellites ont été déployés, mais sur de mauvaises orbites. En effet, si le périgée (235 km) et l'apogée (43 150 km) sont conformes aux attentes, l'inclinaison de l'orbite obtenue est de 21° au lieu des 3° visés[59]. Le satellite SES 14 pourra atteindre l'orbite prévue au bout d'un mois[60], sans réduction significative de sa durée de vie grâce au très bon rendement de sa propulsion électrique[61],[62]. Le satellite Al Yah 3 a été déclaré à poste et opérationnel le [63]. La réduction de sa durée de vie due à la consommation supplémentaire de ses ergols a été estimée à six ans, sur une durée de vie nominale de quinze ans[64].

L'important écart de trajectoire subi par la fusée a soulevé de nombreuses questions quant à la sécurité des vols. Car si l'erreur de programmation n'aurait théoriquement jamais dû passer entre les mailles du filet des nombreuses étapes de vérification entreprises avant un lancement, un autre fait inquiète les divers acteurs de l'exploitation spatiale européenne. En effet, du fait de sa déviation de près de 20°, la fusée a survolé la commune de Kourou, ce qui n'était jamais arrivé auparavant. Si un incident grave avait eu lieu à ce moment-là, les conséquences auraient pu être très lourdes pour les habitants de la commune survolée par la fusée[58].

La commission d'enquête a établi que la cause de la déviation de la trajectoire était une erreur d'alignement des deux centrales inertielles — l'azimut requis spécifiquement pour ce vol vers une orbite de transfert géostationnaire super-synchrone étant de 70° au lieu des 90° habituels. Elle a recommandé le renforcement du contrôle des données utilisées lors de la préparation des missions. La mise en œuvre de ces mesures correctives permettra la reprise des vols selon le calendrier prévu, dès le mois de [65].

Liste détaillée des vols

[modifier | modifier le code]
Échec partiel : le satellite est à poste mais sa durée de vie est plus brève que prévu ou son orbite n'est pas exactement celle souhaitée ou seul un des deux satellites fonctionne
Date et Heure (UTC) Vol Version N° de
série
Charge utile Résultat Opérateur(s)
à 12:34 V-88 5G 501 Cluster Échec ESA Drapeau de l’Union européenne Union européenne
à 13:43 V-101 5G 502 MaqSat H et TEAMSAT, MaqSat B, YES Échec partiel[66] ESA Drapeau de l’Union européenne Union européenne
à 16:37 V-112 5G 503 MaqSat 3, ARD Succès ESA Drapeau de l’Union européenne Union européenne / ARD Drapeau de l'Allemagne Allemagne
à 14:32 V-119 5G 504 XMM-Newton Succès ESA Drapeau de l’Union européenne Union européenne
à 23:28 V-128 5G 505 INSAT 3B, AsiaStar Succès ISRO Drapeau de l'Inde Inde / Worldspace Drapeau des États-Unis États-Unis
à 22:54 V-130 5G 506 Astra 2B, GE 7 Succès SES S.A.Drapeau du Luxembourg Luxembourg
à 01:07 V-135 5G 507 PAS 1R, Amsat P3D, STRV 1C, STRV 1D Succès Intelsat Drapeau du Luxembourg Luxembourg et PanAmSat Drapeau des États-Unis États-Unis (PAS 1R) / AMSAT Drapeau des États-Unis États-Unis (Amsat P3D) / STRV Drapeau du Royaume-Uni Royaume-Uni (STRV 1C, STRV 1D)
à 00:26 V-138 5G 508 Astra 2D, GE 8 (Aurora 3), LDREX Succès SES S.A. et SES ASTRA Drapeau du Luxembourg Luxembourg (ASTRA 2D) / SES World Skies Drapeau des États-Unis États-Unis et Drapeau des Pays-Bas Pays-Bas (GE 8) / NASDA Drapeau du Japon Japon (LDREX)
à 22:51 V-140 5G 509 Eurobird 1, BSat 2a Succès Eutelsat Drapeau de la France France / B-SAT Drapeau du Japon Japon
à 22:58 V-142 5G 510 Artemis, BSat 2b Échec partiel ESA Drapeau de l’Union européenne Union européenne / B-SAT Drapeau du Japon Japon
à 01:07 V-145 5G 511 Envisat Succès ESA Drapeau de l’Union européenne Union européenne
à 23:22 V-153 5G 512 Stellat 5, N-Star c Succès Drapeau de la France France / NTT DoCoMo Drapeau du Japon Japon
à 22:45 V-155 5G 513 Atlantic Bird 1, MSG-1, MFD Succès Eutelsat Drapeau de la France France (Atlantic Bird 1) / EUMETSAT Drapeau de l’Union européenne Union européenne (MSG-1)
à 22:22 V-157 5ECA 517 Hot Bird 7, Stentor, MFD A, MFD B Échec Eutelsat Drapeau de la France France (Hot Bird 7) / CNES Drapeau de la France France (Stentor)
à 22:52 V-160 5G 514 Insat 3A, Galaxy 12 Succès ISRO Drapeau de l'Inde Inde (Insat 3A) / PanAmSat Drapeau des États-Unis États-Unis (Galaxy 12)
à 22:38 V-161 5G 515 Optus C1, BSat 2c Succès SingTel Optus Drapeau de l'Australie Australie (Optus C1) / B-SAT Drapeau du Japon Japon (BSat 2c)
à 23:14 V-162 5G 516 Insat 3E, eBird 1, SMART-1 Succès ISRO Drapeau de l'Inde Inde (Insat 3E) / Eutelsat Drapeau de la France France (eBird 1) / ESA Drapeau de l’Union européenne Union européenne (SMART-1)
à 07:17 V-158 5G+ 518 Rosetta Succès ESA Drapeau de l’Union européenne Union européenne
à 00:44 V-163 5G+ 519 Anik-F2 Succès Télésat Canada Drapeau du Canada Canada
à 16:26 V-165 5G+ 520 Helios 2A, Essaim 1, 2, 3, 4, PARASOL, Nanosat 01 Succès Armée Drapeau de la France FranceDrapeau de la Belgique BelgiqueDrapeau de l'Espagne EspagneDrapeau de la Grèce Grèce (Helios 2A) / CNES Drapeau de la France France (Essaim 1, 2, 3, 4 + PARASOL) / INTA Drapeau de l'Espagne Espagne (Nanosat 01)
à 21:03 V-164 5ECA 521 XTAR-EUR, Maqsat B2, Sloshsat Succès XTAR LLC Drapeau des États-Unis États-Unis (XTAR-EUR)/ ESA Drapeau de l’Union européenne Union européenne (Maqsat B2 et Sloshsat)
à 08:20 V-166 5GS 523 Thaïcom 4-iPStar 1 Succès Thaicom Drapeau de la Thaïlande Thaïlande
à 22:32 V-168 5GS 524 Syracuse III-A, Galaxy 15 Succès Ministère français de la Défense Drapeau de la France France (Syracuse III-A) / PanAmSat Drapeau des États-Unis États-Unis (Galaxy 15)
à 23:46 V-167 5ECA 522 Spaceway F2, Telkom 2 Succès DIRECTV Drapeau des États-Unis États-Unis (Spaceway F2) / PT Telkomunikasi Indonesia Drapeau de l'Indonésie Indonésie (Telkom 2)
à 22:33 V-169 5GS 525 Insat 4A, MSG-2 Succès ISRO Drapeau de l'Inde Inde (Insat 4A) / ESA & Eumetsat  Europe (MSG-2)
à 22:32 V-170 5ECA 527 Spainsat, Hot Bird 7A Succès HISDESAT Drapeau de l'Espagne Espagne (Spainsat) / EUTELSAT Drapeau de l’Union européenne Union européenne (Hot Bird 7A)
à 21:08 V-171 5ECA 529 Satmex 6, Thaicom 5 Succès Satélites Mexicanos S.A. de C.V Drapeau du Mexique Mexique / Shin Satellite Plc Drapeau de la Thaïlande Thaïlande
à 22:15 V-172 5ECA 531 JCSat 10, Syracuse III-B Succès JCSAT Corporation Drapeau du Japon Japon (JCSat 10) / Ministère français de la Défense Drapeau de la France France (Syracuse III-B)
à 20:56 V-173 5ECA 533 DirecTV-9S, Optus D1, LDREX-2 Succès DIRECTV Inc. Drapeau des États-Unis États-Unis (DirecTV-9S) / Optus Drapeau de l'Australie Australie (Optus D1) / JAXA Drapeau du Japon Japon (LDREX 2)
à 22:08 V-174 5ECA 534 WildBlue 1, AMC 18 Succès WildBlue Drapeau des États-Unis États-Unis (WildBlue 1) / SES Americom Drapeau des États-Unis États-Unis (AMC 18)
à 22:03 V-175 5ECA 535 Skynet-5A, Insat-4B Succès EADS Astrium  Europe (Skynet-5A) / ISRO Drapeau de l'Inde Inde (Insat-4B)
à 22:29 V-176 5ECA 536 Astra 1L, Galaxy 17 (en) Succès SES Astra Drapeau des États-Unis États-Unis (Astra 1L) / Intelsat Drapeau du Luxembourg Luxembourg (Galaxy 17)
à 23:44 V-177 5ECA 537 SPACEWAY 3, BSAT-3A Succès Hughes Network Systems Drapeau des États-Unis États-Unis (SPACEWAY 3) / Broadcasting Satellite System Corporation Drapeau du Japon Japon (BSAT-3A)
à 21:28 V-178 5GS 526 INTELSAT 11, OPTUS D2 Succès Intelsat Drapeau du Luxembourg Luxembourg (INTELSAT 11) / Optus Drapeau de l'Australie Australie (OPTUS D2)
à 22:06 V-179 5ECA 538 STAR ONE C1 et Skynet 5B Succès Star One Drapeau du Brésil Brésil (STAR ONE C1) / Astrium Paradigm  Europe & Ministère Britannique de la défense Drapeau du Royaume-Uni Royaume-Uni (Skynet 5B)
à 21:42 V-180 5GS 530 Horizons-2 et Rascom-QAF1 Succès RASCOMSTAR-QAF (Rascom-QAF1) / Horizons Satellite LLC Drapeau des États-Unis États-Unis (Horizons-2)
à 04:23 V-181 5ES 528 ATV 1 « Jules Verne » (ATV) Succès ESA  Europe
à 22:17 V-182 5ECA 539 Star One C2 et VINASAT-1 Succès Star One Drapeau du Brésil Brésil (Star One C2) / VNPT Drapeau de la République socialiste du Viêt Nam Viêt Nam (VINASAT-1)
à 21:54 V-183 5ECA 540 Skynet 5C et Turksat 3A Succès Astrium Paradigm  Europe & Ministère Britannique de la défense Drapeau du Royaume-Uni Royaume-Uni (Skynet 5C) / Turksat AS Drapeau de la Turquie Turquie (Turksat 3A)
à 21:47 V-184 5ECA 541 ProtoStar I et BADR-6 Succès Protostar Ltd Drapeau des États-Unis États-Unis (ProtoStar I) / Arabsat Drapeau de l'Arabie saoudite Arabie saoudite (BADR-6)
à 20:44 V-185 5ECA 542 Superbird-7 et AMC-21 Succès SCC & Mitsubishi Electrik Corporation Drapeau du Japon Japon (Superbird-7) / SES Americom Drapeau des États-Unis États-Unis (AMC-21)
à 22:35 V-186 5ECA 543 Hot Bird 9 et W2M Succès Eutelsat Drapeau de la France France
à 23:09 V-187 5ECA 545 Hot Bird 10, SPIRALE 1&2 et NSS-9 Succès Eutelsat Drapeau de la France France (Hot Bird 10)/ SES Drapeau des États-Unis États-Unis (NSS-9) / CNES & DGA Drapeau de la France France (SPIRALE 1&2)
à 13:12 V-188 5ECA 546 Planck et Télescope spatial Herschel Succès ESA & NASA  Europe Drapeau des États-Unis États-Unis (Planck) / ESA  Europe (Télescope spatial Herschel)
à 17:52 V-189 5ECA 547 TerreStar-I Succès TerreStar Networks Drapeau des États-Unis États-Unis
à 22:09 V-190 5ECA 548 JCSat 12 et Optus D3 Succès JSat Corporation Drapeau du Japon Japon (JCSat 12) / Optus Drapeau de l'Australie Australie (Optus D3)
à 21:59 V-191 5ECA 549 Amazonas 2 et ComsatBw-1 Succès Hispasat Drapeau de l'Espagne Espagne (Amazonas 2) / Forces armées fédérales allemandes Drapeau de l'Allemagne Allemagne (ComsatBw-1)
à 20:00 V-192 5ECA 550 THOR 6 et NSS12 Succès TELENOR Satellite Briadcasting Drapeau de la Norvège Norvège (THOR 6) / SES  Europe (NSS12)
à 16:26 V-193 5GS 532 Helios 2B Succès Armée Drapeau de la France France Drapeau de la Belgique Belgique Drapeau de l'Espagne Espagne Drapeau de la Grèce Grèce
à 22:01 V-194 5ECA 551 ASTRA 3B et ComsatBw-2 Succès SES S.A. et SES ASTRA Drapeau du Luxembourg Luxembourg (ASTRA 3B) / Forces armées fédérales allemandes Drapeau de l'Allemagne Allemagne (ComsatBw-12)
à 21:42 V-195 5ECA 552 Arabsat-5A & COMS Succès ArabSatDrapeau de l'Arabie saoudite Arabie saoudite / (Arabsat-5A) /KARI Drapeau de la Corée du Sud Corée du Sud (COMS-1)
à 20:59 V-196 5ECA 554 RASCOM-QAF 1R & NILESAT 201 Succès RASCOM (RASCOM-QAF 1R) / NilesatDrapeau de l'Égypte Égypte (Nilesat 201)
à 21:51 V-197 5ECA 555 Eutelsat W3B & BSAT-3b Succès Eutelsat Drapeau de la France France (Eutelsat W3B) / Broadcasting Satellite System Corporation Drapeau du Japon Japon (BSAT-3b)
à 15:39 V-198 5ECA 556 HYLAS 1 & INTELSAT 17 Succès Avanti Communications Group PLC Drapeau du Royaume-Uni Royaume-Uni (HYLAS 1) / Intelsat Drapeau des États-Unis États-Unis (INTELSAT 17)
à 22:27 V-199 5ECA 557 Hispasat 30W-5 (ex Hispasat 1E) & Koreasat 6 Succès Hispasat Drapeau de l'Espagne Espagne (Hispasat 30W-5) / KTSAT Drapeau de la Corée du Sud Corée du Sud (Koreasat 6)
à 21:50 V-200 5ES 544 ATV 2 « Johannes Kepler » Succès ESA  Europe
à 20:17 VA-201 5ECA 558 Yahsat 1A & Intelsat New Dawn Succès Al Yah Satellite Communications Drapeau des Émirats arabes unis Émirats arabes unis (Yahsat 1A) /New Dawn Satellite Company Ltd.Drapeau des États-Unis États-Unis (Intelsat New Dawn)
à 20:38 VA-202 5ECA 559 ST-2 & GSAT-8 Succès Singapore Telecom Drapeau de Singapour Singapour & Chunghwa Telecom Drapeau de Taïwan Taïwan (ST-2) / ISRO Drapeau de l'Inde Inde (GSAT-8)
à 22:52 VA-203 5ECA 560 ASTRA 1N & BSAT-3c/JCSAT-110R Succès SES SA & SES ASTRA Drapeau du Luxembourg Luxembourg (ASTRA 1N) /Broadcasting Satellite System Corporation & SKY Perfect JSAT Drapeau du Japon Japon (BSAT-3c/JCSAT-110R)
à 21:38 VA-204 5ECA 561 Arabsat-5C & SES-2 Succès ArabSat Drapeau de l'Arabie saoudite Arabie saoudite / (Arabsat-5C)/SES World Skies Drapeau des Pays-Bas Pays-Bas Drapeau des États-Unis États-Unis (SES-2)
à 04:34 VA-205 5ES 553 ATV 3 « Edoardo Amaldi » Succès ESA  Europe
à 22:13 VA-206 5ECA 562 JCSat-13 & VinaSat-2 Succès[67] JSat Corporation Drapeau du Japon Japon (JCSat-13) / Vietnam Posts and Telecommunications Group Drapeau de la République socialiste du Viêt Nam Viêt Nam (VinaSat-2)
à 21:36 VA-207 5ECA 563 MSG-3 & EchoStar XVII Succès[68] ESA & Eumetsat  Europe (MSG-3) / EchoStar & Hughes Network Systems Drapeau des États-Unis États-Unis (EchoStar XVII)
à 20:54 VA-208 5ECA 564 INTELSAT 20 & HYLAS 2 Succès[69] Intelsat Drapeau des États-Unis États-Unis (INTELSAT 20) / Avanti Communications Group PLC Drapeau du Royaume-Uni Royaume-Uni (HYLAS 2)
à 21:18 VA-209 5ECA 565 ASTRA 2F & GSAT 10 Succès[70] SES S.A. et SES ASTRA Drapeau du Luxembourg Luxembourg (ASTRA 2F) / ISRO Drapeau de l'Inde Inde (GSAT-10)
à 21:05 VA-210 5ECA 566 Star One C3 & Eutelsat 21B (ex W6A) Succès[71] Star One Drapeau du Brésil Brésil (Star One C3) / Eutelsat Drapeau de la France France (Eutelsat 21B, ex W6A)
à 21:49 VA-211 5ECA 567 Skynet 5D & Mexsat 3 Succès[72] Astrium Paradigm  Europe & armée du Drapeau du Royaume-Uni Royaume-Uni (Skynet 5D) / Secretaria Communicaciones Transportes of México Drapeau du Mexique Mexique (Mexsat 3)
à 21:36 VA-212 5ECA 568 Amazonas 3 & Azerspace/Africasat-1a Succès[73] Hispasat Drapeau de l'Espagne Espagne (Amazonas 3) /Azercosmos Drapeau de l'Azerbaïdjan Azerbaïdjan (Azerspace/Africasat-1a)
à 21:52 VA-213 5ES 592 ATV 4 « Albert Einstein » Succès[74] ESA  Europe
à 19:54 VA-214 5ECA 569 INSAT-3D & Alphasat Succès[75] InmarsatDrapeau du Royaume-Uni Royaume-Uni (Alphasat), Indian Space Research Organisation (ISRO) Drapeau de l'Inde Inde (INSAT-3D)
à 20:30 VA-215 5ECA 570 EUTELSAT 25B/Es’hail 1 & GSAT-7 Succès[76] Eutelsat Drapeau de la France France et Es'hailSat Drapeau du Qatar Qatar (Eutelsat 25B/Es’hail 1) / ISRO Drapeau de l'Inde Inde (GSAT-7)
à 21:30 VA-217 5ECA 572 ABS-2 & Athena-Fidus Succès[77] ABS-2, Telespazio Drapeau de la France France Drapeau de l'Italie Italie (Athena-Fidus)
à 22:04 VA-216 5ECA 571 ASTRA 5B (en) & Amazonas 4A Succès[78] SES S.A. et SES ASTRA Drapeau du Luxembourg Luxembourg (ASTRA 5B) / Hispasat Drapeau de l'Espagne Espagne (Amazonas 4A)
à 23:47 VA-219 5ES 593 ATV 5 « Georges Lemaître » Succès[79] ESA  Europe
à 22:05 VA-218 5ECA 573 OPTUS 10 & MEASAT-3b Succès[80] Optus Drapeau de l'Australie Australie (OPTUS 10) /MEASAT Satellite Systems Drapeau de la Malaisie Malaisie (MEASAT-3b)
à 21:43 VA-220 5ECA 574 Intelsat 30 & ARSAT-1 Succès[81] Intelsat Drapeau des États-Unis États-Unis (Intelsat 30) / ARSAT Drapeau de l'Argentine Argentine (ARSAT-1)
à 20:40 VA-221 5ECA 575 DirecTV-14 & GSAT-16 Succès[82] DirecTV Drapeau des États-Unis États-Unis (DirecTV-14) / ISRO Drapeau de l'Inde Inde (GSAT-16)
à 20:00 VA-222 5ECA 576 THOR 7 & SICRAL 2 Succès[83] British Satellite Broadcasting Drapeau du Royaume-Uni Royaume-Uni(Thor 7)/Syracuse (satellite) Drapeau de la France France (SICRAL 2)
à 21:16 VA-223 5ECA 577 DirecTV-15 & SkyMexico-1 Succès[84] DirecTV Drapeau des États-Unis États-Unis (DirecTV-15) / DirecTV Latin America Drapeau des États-Unis États-Unis & Drapeau du Royaume-Uni Royaume-Uni & Drapeau du Mexique Mexique (SkyMexico-1)
à 21:42 VA-224 5ECA 578 Star One C4 & MSG-4 Succès[85] Star One Drapeau du Brésil Brésil (Star One C4) / ESA & Eumetsat  Europe (MSG-4)
à 20:34 VA-225 5ECA 579 Eutelsat 8 West B & Intelsat 34 Succès[86] Eutelsat Drapeau de la France France (Eutelsat 8 West B) / Intelsat Drapeau des États-Unis États-Unis (Intelsat 34)
à 20:30 VA-226 5ECA 580 Sky Muster™ & ARSAT-2 Succès[87] NBN Drapeau de l'Australie Australie (Sky Muster™) / ARSAT Drapeau de l'Argentine Argentine (ARSAT-2)
à 21:34 VA-227 5ECA 581 ARABSAT-6B & GSAT-15 Succès[88] Arabsat Drapeau de l'Arabie saoudite Arabie saoudite (ARABSAT-6B) / ISRO Drapeau de l'Inde Inde (GSAT-15)
à 23:20 VA-228 5ECA 583 Intelsat 29e Succès[89] Intelsat Drapeau des États-Unis États-Unis
à 05:20 VA-229 5ECA 582 Eutelsat 65 West A Succès[90] Eutelsat Drapeau de la France France
à 21:38 VA-230[91] 5ECA 584 BRIsat & EchoStar XVIII Succès[92] Persero Drapeau de l'Indonésie Indonésie (BRIsat) / Dish Network Drapeau des États-Unis États-Unis (EchoStar XVIII)
à 22:16 VA-232 5ECA 586 Intelsat 33e & Intelsat 36 Succès[93] Intelsat Drapeau des États-Unis États-Unis
à 20:30 VA-231 5ECA 585 Sky Muster™ II & GSAT-18 Succès[94] NBN Drapeau de l'Australie Australie (Sky Muster™ II) / ISRO Drapeau de l'Inde Inde (GSAT-18)
à 13:06 VA-233[95] 5ES 594 Galileo FOC-M6 satellites 15, 16, 17, 18 Succès[37] Commission Européenne Drapeau de l’Union européenne Union européenne
à 20:30 VA-234[96] 5ECA 587 Star One D1 & JCSAT-15 Succès[97] Embratel Star One Drapeau du Brésil Brésil (Star One D1) / SKY Perfect Drapeau du Japon Japon (JCSAT-15)
à 21:39 VA-235[98] 5ECA 588 SKY Brazil-1 & Telkom-3S Succès[99] DirecTV Latin America (Amérique Latine) Drapeau des États-Unis États-Unis Drapeau du Brésil Brésil (SKY Brazil-1) / PT Telkomunikasi Indonesia Drapeau de l'Indonésie Indonésie (Telkom-3S)
à 21:50 VA-236[100] 5ECA 589 SGDC et KOREASAT-7 Succès[101] Telebras S.A Drapeau du Brésil Brésil (SGDC) / KTSAT Drapeau de la Corée du Sud Corée du Sud (KOREASAT-7)
à 23:45 VA-237[102] 5ECA 590 ViaSat-2 & Eutelsat 172B Succès[103] ViaSat Drapeau des États-Unis États-Unis (ViaSat-2) / Eutelsat Drapeau de la France France (EUTELSAT 17)
à 21:15 VA-238[104] 5ECA 591 HellasSat 3/Inmarsat-S-EAN (EuropaSat) & GSat 17 Succès[105] Inmarsat Drapeau du Royaume-Uni Royaume-Uni & Hellas Sat Drapeau de Chypre Chypre (HellasSat 3/Inmarsat-S-EAN/EuropaSat) / ISRO Drapeau de l'Inde Inde (GSat-17)
à 21:56 VA-239[106] 5ECA 5100 Intelsat 37e & BSAT 4a Succès[107] Intelsat Drapeau des États-Unis États-Unis (Intelsat 37e) / Broadcasting Satellite System Corporation Drapeau du Japon Japon (BSAT 4a)
à 18:36 VA-240[108] 5ES 595 Galileo FOC-M7 satellites 19, 20, 21, 22 Succès[109] Commission européenne Drapeau de l’Union européenne Union européenne
à 22:20 VA-241[110] 5ECA 5101 SES 14/GOLD, Al Yah 3 Échec partiel[111] SES Drapeau du Luxembourg Luxembourg, Al Yah Satellite Communications Company (en) Drapeau des Émirats arabes unis Émirats arabes unis
à 21:34 VA-242[112] 5ECA 5102 Superbird 8/DSN 1, HYLAS 4 Succès[113] SKY Perfect JSAT Corporation Drapeau du Japon Japon, Ministère de la Défense du Japon Drapeau du Japon Japon, Avanti Communications (en) Drapeau du Royaume-Uni Royaume-Uni
à 11:25 VA-244[114] 5ES 596 Galileo, satellites FOC 23, 24, 25 et 26 Succès[115] Commission européenne Drapeau de l’Union européenne Union européenne
à 22:38 VA-243[116] 5ECA 5103 Horizons 3e, Azerspace-2/Intelsat 38 Succès[117] SKY Perfect JSAT Corporation Drapeau du Japon Japon, Intelsat Drapeau du Luxembourg Luxembourg, Ministère de la Communication et des Technologies de l'information Drapeau de l'Azerbaïdjan Azerbaïdjan, Intelsat Drapeau du Luxembourg Luxembourg
à 01:45 VA-245[118] 5ECA 5105 BepiColombo-MPO, BepiColombo-MMO Succès[119] ESA Drapeau de l’Union européenne Union européenne, JAXA Drapeau du Japon Japon
à 20:37 VA-246[120] 5ECA 5104a GSat 11, GEO-KOMPSAT-2A Succès[121] INSAT Drapeau de l'Inde Inde, KARI Drapeau de la Corée du Sud Corée du Sud
à 21:01 VA-247[122] 5ECA 5106 HellasSat 4/SaudiGeoSat 1, GSat 31 Succès[123] Hellas Sat Drapeau de la Grèce Grèce, ArabSat Drapeau de l'Arabie saoudite Arabie saoudite, INSAT Drapeau de l'Inde Inde
à 21:43 VA-248[124] 5ECA 5107 DirecTV 16, Eutelsat 7C Succès[125] DirecTV Drapeau des États-Unis États-Unis, Eutelsat Drapeau de la France France
à 19:30 VA-249[126] 5ECA 5109[127] Intelsat 39, EDRS-C / HYLAS 3 Succès[128] Intelsat Drapeau du Luxembourg Luxembourg,ESA Drapeau de l’Union européenne Union européenne
à 21:23 VA-250[129] 5ECA 5108 TIBA-1, Inmarsat-5 F5 (GX 5) Succès[130] Gouvernement de l'Égypte Drapeau de l'Égypte Égypte, Inmarsat Drapeau du Royaume-Uni Royaume-Uni
à 21:05 VA-251[131] 5ECA 5110 Eutelsat Konnect, GSat 30 Succès[132] Eutelsat Drapeau de la France France, INSAT Drapeau de l'Inde Inde
à 22:18 VA-252[133] 5ECA 5111 JCSat 17, GEO-KOMPSAT 2B Succès[134] SKY Perfect JSAT Corporation Drapeau du Japon Japon,