Princípio da incerteza de Heisenberg – Wikipédia, a enciclopédia livre
O princípio da incerteza, também conhecido como princípio da indeterminação de Heisenberg, é um conceito fundamental na mecânica quântica. Ele afirma que há um limite para a precisão com que certos pares de propriedades físicas, como posição e momento, podem ser conhecidos simultaneamente. Em outras palavras, quanto mais precisamente uma propriedade é medida, menos precisamente a outra propriedade pode ser conhecida.
Mais formalmente, o princípio da incerteza é qualquer uma de uma variedade de desigualdades matemáticas que afirmam um limite fundamental para o produto da precisão de certos pares relacionados de medições em um sistema quântico, como posição, x, e momento, p.[1] Essas variáveis pareadas são conhecidas como variáveis complementares ou variáveis canonicamente conjugadas.
Introduzida pela primeira vez em 1927 pelo físico alemão Werner Heisenberg,[2][3][4][5] a desigualdade formal que relaciona o desvio padrão da posição σx e o desvio padrão do momento σp foi derivada por Earle Hesse Kennard[6] mais tarde naquele ano e por Hermann Weyl[7] em 1928:
onde é a constante de Planck reduzida.
O princípio da incerteza essencialmente mecânica quântica vem em muitas formas além de posição-momento. A relação energia-tempo é amplamente usada para relacionar o tempo de vida do estado quântico a larguras de energia medidas, mas sua derivação formal é repleta de questões confusas sobre a natureza do tempo. O princípio básico foi estendido em várias direções; ele deve ser considerado em muitos tipos de medições físicas fundamentais.
Posição-momento
[editar | editar código-fonte]É vital ilustrar como o princípio se aplica a situações físicas relativamente inteligíveis, uma vez que é indiscernível nas escalas macroscópicas[8] que os humanos vivenciam. Duas estruturas alternativas para a física quântica oferecem explicações diferentes para o princípio da incerteza. A imagem da mecânica ondulatória do princípio da incerteza é mais intuitiva visualmente, mas a imagem mais abstrata da mecânica matricial o formula de uma forma que generaliza mais facilmente.
Matematicamente, na mecânica ondulatória, a relação de incerteza entre posição e momento surge porque as expressões da função de onda nas duas bases ortonormais correspondentes no espaço de Hilbert são transformadas de Fourier uma da outra (ou seja, posição e momento são variáveis conjugadas). Uma função diferente de zero e sua transformada de Fourier não podem ser nitidamente localizadas ao mesmo tempo.[9] Uma compensação semelhante entre as variâncias dos conjugados de Fourier surge em todos os sistemas subjacentes à análise de Fourier, por exemplo em ondas sonoras: um tom puro é um pico agudo em uma única frequência, enquanto sua transformada de Fourier dá a forma da onda sonora no domínio do tempo, que é uma onda senoidal completamente deslocalizada. Na mecânica quântica, os dois pontos-chave são que a posição da partícula assume a forma de uma onda de matéria, e o momento é seu conjugado de Fourier, assegurado pela relação de Broglie p = ħk, onde k é o número de onda.
Na mecânica matricial, a formulação matemática da mecânica quântica, qualquer par de operadores autoadjuntos não comutativos representando observáveis estão sujeitos a limites de incerteza semelhantes. Um autoestado de um observável representa o estado da função de onda para um certo valor de medição (o autovalor). Por exemplo, se uma medição de um observável A for realizada, então o sistema está em um autoestado particular Ψ daquele observável. Entretanto, o autoestado particular do observável A não precisa ser um autoestado de outro observável B: Se for, então ele não tem uma medição única associada a ele, pois o sistema não está em um autoestado daquele observável.[10]
Visualização
[editar | editar código-fonte]O princípio da incerteza pode ser visualizado usando as funções de onda de posição-espaço e de momento-espaço para uma partícula sem spin com massa em uma dimensão.
Quanto mais localizada a função de onda de posição-espaço, mais provável é que a partícula seja encontrada com as coordenadas de posição naquela região e, correspondentemente, a função de onda de momento-espaço é menos localizada, de modo que os possíveis componentes de momento que a partícula poderia ter são mais difundidos. Por outro lado, quanto mais localizada a função de onda de momento-espaço, mais provável é que a partícula seja encontrada com aqueles valores de componentes de momento naquela região e, correspondentemente, menos localizada a função de onda de posição-espaço, de modo que as coordenadas de posição que a partícula poderia ocupar são mais difundidas. Essas funções de onda são transformadas de Fourier uma da outra: matematicamente, o princípio da incerteza expressa a relação entre variáveis conjugadas na transformada.
Interpretação da mecânica ondulatória
[editar | editar código-fonte]De acordo com a hipótese de de Broglie, todo objeto no universo está associado a uma onda. Assim, todo objeto, de uma partícula elementar a átomos, moléculas e planetas e além, está sujeito ao princípio da incerteza.
A função de onda independente do tempo de uma onda plana monomodo de número de onda k0 ou momento p0 é: A regra de Born afirma que isso deve ser interpretado como uma função de amplitude de densidade de probabilidade no sentido de que a probabilidade de encontrar a partícula entre a e b é: No caso da onda plana monomodo, é 1 se e 0 caso contrário. Em outras palavras, a posição da partícula é extremamente incerta no sentido de que ela poderia estar essencialmente em qualquer lugar ao longo do pacote de ondas.
Por outro lado, considere uma função de onda que é uma soma de muitas ondas, que podemos escrever como: onde An representa a contribuição relativa do modo pn para o total geral. As figuras à direita mostram como com a adição de muitas ondas planas, o pacote de ondas pode se tornar mais localizado. Podemos levar isso um passo adiante para o limite do contínuo, onde a função de onda é uma integral sobre todos os modos possíveis: com representando a amplitude desses modos e é chamada de função de onda no espaço de momento. Em termos matemáticos, dizemos que é a transformada de Fourier de e que x e p são variáveis conjugadas. Adicionar todas essas ondas planas tem um custo, ou seja, o momento se tornou menos preciso, tendo se tornado uma mistura de ondas de muitos momentos diferentes.[11]
Uma maneira de quantificar a precisão da posição e do momento é o desvio padrão σ. Como é uma função de densidade de probabilidade para posição, calculamos seu desvio padrão.
A precisão da posição é melhorada, ou seja, σx reduzido, usando muitas ondas planas, enfraquecendo assim a precisão do momento, ou seja, σp aumentado. Outra maneira de afirmar isso é que σx e σp têm uma relação inversa ou são pelo menos limitados por baixo. Este é o princípio da incerteza, cujo limite exato é o limite de Kennard.
Prova da desigualdade de Kennard usando mecânica ondulatória
[editar | editar código-fonte]Estamos interessados nas variâncias de posição e momento, definidas como:
Sem perda de generalidade, assumiremos que as médias desaparecem, o que equivale apenas a uma mudança da origem de nossas coordenadas. (Uma prova mais geral que não faz essa suposição é dada abaixo.) Isso nos dá a forma mais simples:
A função pode ser interpretada como um vetor em um espaço de funções. Podemos definir um produto interno para um par de funçõesu(x) e v(x) neste espaço vetorial: onde o asterisco denota o conjugado complexo.
Com este produto interno definido, notamos que a variância para a posição pode ser escrita como:
Podemos repetir isso para momento interpretando a função como um vetor, mas também podemos tirar vantagem do fato de que e são transformadas de Fourier uma da outra. Avaliamos a transformada de Fourier inversa por meio da integração por partes: onde na integração por partes, o termo cancelado desaparece porque a função de onda desaparece no infinito, e as duas integrações finais reafirmam as transformadas de Fourier. Frequentemente o termo é chamado de operador de momento no espaço de posição. Aplicando o teorema de Plancherel e então o teorema de Parseval, vemos que a variância para momento pode ser escrita como:
A desigualdade de Cauchy-Schwarz afirma que:
O módulo ao quadrado de qualquer número complexo z pode ser expresso como: deixamos e e substituímos estes na equação acima para obter: Só resta avaliar esses produtos internos. Conectando isso às desigualdades acima, obtemos: ou calculando a raiz quadrada: com igualdade se e somente se p e x são linearmente dependentes. Note que a única física envolvida nesta prova foi que e são funções de onda para posição e momento, que são transformadas de Fourier uma da outra. Um resultado similar seria válido para qualquer par de variáveis conjugadas. }}
Interpretação da mecânica matricial
[editar | editar código-fonte](Ref[11])
Na mecânica matricial, observáveis como posição e momento são representados por operadores autoadjuntos. Ao considerar pares de observáveis, uma quantidade importante é o comutador. Para um par de operadores  e , define-se seu comutador como: No caso de posição e momento, o comutador é a relação de comutação canônica: O significado físico da não comutatividade pode ser compreendido considerando o efeito do comutador nos autoestados de posição e momento. Seja um autoestado reto de posição com um autovalor constante x0. Por definição, isso significa que . Aplicando o comutador produz: onde Î é o operador identidade.
Suponha, para fins de prova por contradição, que também é um autoestado reto de momento, com autovalor constante p0. Se isso fosse verdade, então poderíamos escrever: Por outro lado, a relação de comutação canônica acima requer que: Isso implica que nenhum estado quântico pode ser simultaneamente um autoestado de posição e momento.
Quando um estado é medido, ele é projetado em um autoestado na base do observável relevante. Por exemplo, se a posição de uma partícula é medida, então o estado equivale a um autoestado de posição. Isso significa que o estado não é um autoestado de momento, no entanto, mas pode ser representado como uma soma de vários autoestados de base de momento. Em outras palavras, o momento deve ser menos preciso. Essa precisão pode ser quantificada pelos desvios-padrão: Assim como na interpretação da mecânica ondulatória acima, observa-se uma compensação entre as respectivas precisões dos dois, quantificadas pelo princípio da incerteza.
Exemplos
[editar | editar código-fonte](Refs[11])
Estados estacionários do oscilador harmônico quântico
[editar | editar código-fonte]Considere um oscilador harmônico quântico unidimensional. É possível expressar os operadores de posição e momento em termos dos operadores de criação e aniquilação: Usando as regras padrão para operadores de criação e aniquilação nos autoestados de energia: as variâncias podem ser calculadas diretamente: O produto desses desvios padrão é então: Em particular, o limite de Kennard acima[6] é saturado para o estado fundamental n=0, para o qual a densidade de probabilidade é apenas a distribuição normal.
Osciladores harmônicos quânticos com condição inicial gaussiana
[editar | editar código-fonte]Em um oscilador harmônico quântico de frequência angular característica ω, coloque um estado que é deslocado da base do potencial por algum deslocamento x0 como: onde Ω descreve a largura do estado inicial, mas não precisa ser o mesmo que ω. Por meio da integração sobre o propagador, podemos resolver a solução dependente do tempo total. Após muitos cancelamentos, as densidades de probabilidade reduzem para: onde usamos a notação para denotar uma distribuição normal de média μ e variância σ2. Copiando as variâncias acima e aplicando identidades trigonométricas, podemos escrever o produto dos desvios padrões como: A partir das relações podemos concluir o seguinte (a igualdade mais à direita é válida somente quando Ω = ω):
Estados coerentes
[editar | editar código-fonte]Um estado coerente é um autoestado correto do operador de aniquilação, que pode ser representado em termos de estados de Fock como: Na imagem em que o estado coerente é uma partícula massiva em um oscilador harmônico quântico, os operadores de momento e posição podem ser expressos em termos dos operadores de aniquilação nas mesmas fórmulas acima e usados para calcular as variâncias: Portanto, todo estado coerente satura o limite de Kennard: Com posição e momento contribuindo cada um com uma quantidade de uma forma "balanceada". Além disso, cada estado coerente comprimido também satura o limite de Kennard, embora as contribuições individuais de posição e momento não precisem ser balanceadas em geral.
Partícula em uma caixa
[editar | editar código-fonte]Considere uma partícula em uma caixa unidimensional de comprimento . As autofunções no espaço de momento e posição são: e onde e usamos a relação de de Broglie . As variâncias de e podem ser calculadas explicitamente: O produto dos desvios-padrão é, portanto: Para todo , a quantidade é maior que 1, então o princípio da incerteza nunca é violado. Para concretude numérica, o menor valor ocorre quando , caso em que:
Momento constante
[editar | editar código-fonte]Suponha que uma partícula inicialmente tenha uma função de onda de espaço de momento descrita por uma distribuição normal em torno de algum momento constante p0 de acordo com: Onde introduzimos uma escala de referência , com descrevendo a largura da distribuição. Se o estado puder evoluir no espaço livre, então as funções de onda de espaço de posição e de momento dependentes de tempo são: Como e , isso pode ser interpretado como uma partícula se movendo com momento constante em precisão arbitrariamente alta. Por outro lado, o desvio padrão de posição é: Tal que o produto da incerteza só pode aumentar com o tempo conforme:
Princípio da incerteza do par energia-tempo
[editar | editar código-fonte]Largura da linha do espectro de energia versus vida útil
[editar | editar código-fonte]Uma relação de incerteza do par energia-tempo como tem uma longa e controversa história; os significados de e variam e diferentes formulações têm diferentes arenas de validade.[12] No entanto, uma aplicação bem conhecida é bem estabelecida[13][14] e verificada experimentalmente:[15][16] a conexão entre o tempo de vida de um estado de ressonância e sua largura de energia : Na física de partículas, larguras de ajustes experimentais para a distribuição de energia de Breit-Wigner são usadas para caracterizar o tempo de vida de estados quase estáveis ou em decaimento.[17]
Um significado informal e heurístico do princípio é o seguinte:[18] Um estado que existe apenas por um curto período de tempo não pode ter uma energia definida. Para ter uma energia definida, a frequência do estado deve ser definida com precisão, e isso requer que o estado permaneça por muitos ciclos, o recíproco da precisão necessária. Por exemplo, na espectroscopia, estados excitados têm um tempo de vida finito. Pelo princípio da incerteza do par energia-tempo, eles não têm uma energia definida e, cada vez que decaem, a energia que liberam é ligeiramente diferente. A energia média do fóton de saída tem um pico na energia teórica do estado, mas a distribuição tem uma largura finita chamada largura de linha natural. Estados de decaimento rápido têm uma largura de linha ampla, enquanto estados de decaimento lento têm uma largura de linha estreita.[19] O mesmo efeito de largura de linha também torna difícil especificar a massa de repouso de partículas instáveis e de decaimento rápido na física de partículas. Quanto mais rápido a partícula decai (menor seu tempo de vida), menos certa é sua massa (maior a largura da partícula).
Tempo na mecânica quântica
[editar | editar código-fonte]O conceito de "tempo" na mecânica quântica oferece muitos desafios.[20] Não existe uma teoria quântica de medição de tempo; a relatividade é fundamental para o tempo e difícil de incluir na mecânica quântica.[12] Enquanto a posição e o momento estão associados a uma única partícula, o tempo é uma propriedade do sistema: não tem operador necessário para a relação de Robertson-Schrödinger.[1] O tratamento matemático de sistemas quânticos estáveis e instáveis difere.[21] Esses fatores se combinam para tornar os princípios de incerteza do par energia-tempo controversos.
Três noções de "tempo" podem ser distinguidas:[12] externo, intrínseco e observável. O tempo externo ou de laboratório é visto pelo experimentador; o tempo intrínseco é inferido por mudanças em variáveis dinâmicas, como os ponteiros de um relógio ou o movimento de uma partícula livre; o tempo observável diz respeito ao tempo como um observável, a medição de eventos separados pelo tempo.
Um princípio de incerteza do par tempo-energia de tempo externo pode dizer que medir a energia de um sistema quântico com uma precisão requer um intervalo de tempo .[14] No entanto, Yakir Aharonov e David Bohm[22][12] mostraram que, em alguns sistemas quânticos, a energia pode ser medida com precisão dentro de um tempo arbitrariamente curto: os princípios de incerteza de tempo externo não são universais.
O tempo intrínseco é a base para várias formulações de relações de incerteza do par energia-tempo, incluindo a relação de Mandelstam-Tamm discutida na próxima seção. Um sistema físico com um tempo intrínseco que corresponde intimamente ao tempo de laboratório externo é chamado de um "relógio".[20]:31
O tempo observável, que mede o tempo entre dois eventos, continua sendo um desafio para as teorias quânticas; algum progresso foi feito usando conceitos de medida com valor de operador positivo.[12]
Mandelstam-Tamm
[editar | editar código-fonte]Em 1945, Leonid Mandelstam e Igor Tamm derivaram uma relação de incerteza do par tempo-energia que não é relativística da seguinte forma:[23][12] Da mecânica de Heisenberg, o teorema de Ehrenfest generalizado para um observável B sem dependência temporal explícita, representado por um operador auto-adjunto relaciona a dependência temporal do valor médio de à média de seu comutador com o hamiltoniano: O valor de é então substituído na relação de incerteza de Robertson para o operador de energia e : dando (sempre que o denominador for diferente de zero). Embora este seja um resultado universal, ele depende do observável escolhido e que os desvios e sejam computados para um estado particular. Identificar e o tempo característico fornece uma relação do par energia-tempo . Embora tenha a dimensão do tempo, ele é diferente do parâmetro de tempo t que entra na equação de Schrödinger. Este pode ser interpretado como o tempo para o qual o valor esperado do observável, , muda por uma quantidade igual a um desvio padrão.[24] Exemplos:
- O tempo em que uma partícula quântica livre passa por um ponto no espaço é mais incerto, pois a energia do estado é controlada de forma mais precisa: . Como a dispersão temporal está relacionada à dispersão da posição da partícula e a dispersão da energia está relacionada à dispersão do momento, essa relação está diretamente relacionada à incerteza do par posição-momento.[25]:144
- Uma partícula Delta, um composto quase-estável de quarks relacionados a prótons e nêutrons, tem uma vida útil de 10−23 s, então sua massa equivalente à energia medida, 1232 MeV/c2, varia em ±120 MeV/c2; essa variação é intrínseca e não é causada por erros de medição.[25]:144
- Dois estados de energia com energias , sobrepostos para criar um estado composto
- .
- A amplitude de probabilidade desse estado tem um termo de interferência dependente do tempo:
- .
- O período de oscilação varia inversamente com a diferença de energia: .[25]:144
Cada exemplo tem um significado diferente para a incerteza de tempo, de acordo com o observável e o estado usado.
Teoria quântica de campos
[editar | editar código-fonte]Algumas formulações da teoria quântica de campos usam pares temporários de elétron-pósitron em seus cálculos, chamados partículas virtuais. O par de massa-energia e o tempo de vida dessas partículas são relacionados pela relação de incerteza do par energia-tempo. A energia de um sistema quântico não é conhecida com precisão suficiente para limitar seu comportamento a uma única história simples. Assim, a influência de todas as histórias deve ser incorporada aos cálculos quânticos, incluindo aquelas com muito mais ou muito menos energia do que a média da distribuição de energia medida/calculada.
O princípio da incerteza do par energia-tempo não viola temporariamente a conservação de energia; não implica que a energia possa ser "emprestada" do universo, desde que seja "devolvida" dentro de um curto período de tempo.[25]:145 A energia do universo não é um parâmetro exatamente conhecido em todos os momentos.[1] Quando os eventos acontecem em intervalos de tempo muito curtos, há incerteza na energia desses eventos.
Incerteza quântica intrínseca
[editar | editar código-fonte]Historicamente, o princípio da incerteza tem sido confundido[26][27] com um efeito relacionado na física, chamado efeito do observador, que observa que as medições de certos sistemas não podem ser feitas sem afetar o sistema,[28][29] isto é, sem mudar algo em um sistema. Heisenberg usou tal efeito do observador no nível quântico (veja abaixo) como uma "explicação" física da incerteza quântica.[30] Desde então, tornou-se mais claro, no entanto, que o princípio da incerteza é inerente às propriedades de todos os sistemas semelhantes a ondas,[31] e que surge na mecânica quântica simplesmente devido à natureza ondulatória da matéria de todos os objetos quânticos.[32] Assim, o princípio da incerteza na verdade afirma uma propriedade fundamental dos sistemas quânticos e não é uma declaração sobre o sucesso observacional da tecnologia atual.[33]
Formalismo matemático
[editar | editar código-fonte]Começando com a derivação de Kennard da incerteza do par posição-momento, Howard Percy Robertson desenvolveu[34][1] uma formulação para operadores hermitianos arbitrários expressos em termos de seus desvios padrão onde os colchetes indicam um valor esperado do observável representado pelo operador . Para um par de operadores e , defina seu comutador como e a relação de incerteza de Robertson é dada por Erwin Schrödinger[35] mostrou como permitir a correlação entre os operadores, dando uma desigualdade mais forte, conhecida como relação de incerteza de Robertson-Schrödinger,[36][1]
onde o anticomutador é usado.
A derivação mostrada aqui incorpora e se baseia naquelas mostradas em Robertson,[34] Schrödinger[36] e livros didáticos padrão como Griffiths.[25]:138 Para qualquer operador hermitiano , com base na definição de variância, temos: Deixamos e assim:
Da mesma forma, para qualquer outro operador hermitiano no mesmo estado para .
O produto dos dois desvios pode então ser expresso como:
-
(1)
Para relacionar os dois vetores e , usamos a desigualdade de Cauchy-Schwarz[37] que é definida como e assim a equação (1) pode ser escrita como:
-
(2)
Como é em geral um número complexo, usamos o fato de que o módulo ao quadrado de qualquer número complexo é definido como , onde é o conjugado complexo de . O módulo ao quadrado também pode ser expresso como:
-
(3)
Deixamos e e substituímos estes na equação acima para obter:
-
(4)
O produto interno é escrito explicitamente como e, usando o fato de que e são operadores hermitianos, encontramos:
Da mesma forma, pode ser demonstrado que:
Assim, temos: e
Agora substituímos as duas equações acima de volta na equação (4) e obtemos:
Substituindo a acima na equação (2) obtemos a relação de incerteza de Schrödinger:
Esta prova tem um problema[38] relacionado aos domínios dos operadores envolvidos. Para que a prova faça sentido, o vetor tem que estar no domínio do operador ilimitado , o que nem sempre é o caso. De fato, a relação de incerteza de Robertson é falsa se for uma variável angular e for a derivada em relação a esta variável. Neste exemplo, o comutador é uma constante diferente de zero — assim como na relação de incerteza de Heisenberg — e ainda assim há estados onde o produto das incertezas é zero.[39] (Veja a seção de contraexemplo abaixo.) Este problema pode ser superado usando um método variacional para a prova,[40][41] ou trabalhando com uma versão exponenciada das relações de comutação canônicas.[39]
Note que na forma geral da relação de incerteza de Robertson-Schrödinger, não há necessidade de assumir que os operadores e são operadores autoadjuntos. É suficiente assumir que eles são meramente operadores simétricos. (A distinção entre essas duas noções é geralmente ignorada na literatura de física, onde o termo Hermitiano é usado para uma ou ambas as classes de operadores. Veja o capítulo 9 do livro de Hall[42] para uma discussão detalhada dessa distinção importante, mas técnica.)
Estados mistos
[editar | editar código-fonte]A relação de incerteza de Robertson-Schrödinger pode ser generalizada de forma direta para descrever estados mistos.
As relações de incerteza de Maccone-Pati
[editar | editar código-fonte]A relação de incerteza de Robertson-Schrödinger pode ser trivial se o estado do sistema for escolhido para ser autoestado de um dos observáveis. As relações de incerteza mais fortes provadas por Lorenzo Maccone e Arun K. Pati fornecem limites que não são triviais na soma das variâncias para dois observáveis incompatíveis.[43] (Trabalhos anteriores sobre relações de incerteza formuladas como a soma das variâncias incluem, por exemplo, Ref.[44] devido a Yichen Huang.) Para dois observáveis que não são comutativos e a primeira relação de incerteza mais forte é dada por onde , , é um vetor normalizado que é ortogonal ao estado do sistema e deve-se escolher o sinal de para tornar esta quantidade real um número positivo.
A segunda relação de incerteza mais forte é dada por