MDMA and 3,4-methylenedioxyamphetamine (MDA) are well-known serotonergic neurotoxins that damageserotonergic neurons in the brain.[2][3][4][5][6] However, MDMA and MDA injected directly into the brain have been found to not produce serotonergic neurotoxicity in rodents.[2][7][8] This suggests that peripherally formed metabolites of MDMA and MDA may be the actual mediators of the neurotoxicity rather than MDMA and MDA themselves.[2][7][8] ODMA, TDMA, and SeDMA, with the exception of N-demethylation, do not share any of the phase I or phase IImetabolic pathways of MDMA.[1] Notably, in contrast to MDMA, methylenedioxy ring opening and consequent formation of catechol metabolites, which have been linked with free radical generation, does not occur.[1] As a result, ODMA, TDMA, and SeDMA might not share the serotonergic neurotoxicity of MDMA and MDA.[1] However, more research is needed to assess this possibility.[1] Moreover, other studies have found that slow infusion of MDMA directly into the brain does produce signs of serotonergic neurotoxicity.[9]
^Kostrzewa RM (2022). "Survey of Selective Monoaminergic Neurotoxins Targeting Dopaminergic, Noradrenergic, and Serotoninergic Neurons". Handbook of Neurotoxicity. Cham: Springer International Publishing. pp. 159–198. doi:10.1007/978-3-031-15080-7_53. ISBN978-3-031-15079-1.
^Parrott AC (September 2013). "MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users". Neurosci Biobehav Rev. 37 (8): 1466–1484. doi:10.1016/j.neubiorev.2013.04.016. PMID23660456.
^Aguilar MA, García-Pardo MP, Parrott AC (January 2020). "Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy')". Brain Res. 1727: 146556. doi:10.1016/j.brainres.2019.146556. PMID31734398.
^ abMonks TJ, Jones DC, Bai F, Lau SS (April 2004). "The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-methylenedioxymethamphetamine (ecstasy) toxicity". Ther Drug Monit. 26 (2): 132–136. doi:10.1097/00007691-200404000-00008. PMID15228153.
^ abEsteban B, O'Shea E, Camarero J, Sanchez V, Green AR, Colado MI (March 2001). "3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose". Psychopharmacology (Berl). 154 (3): 251–260. doi:10.1007/s002130000645. PMID11351932.
^Baggott, Matthew; Mendelson, John (2001). "Does MDMA Cause Brain Damage?". In Holland, J. (ed.). Ecstasy: The Complete Guide: A Comprehensive Look at the Risks and Benefits of MDMA. Inner Traditions/Bear. pp. 110–145, 396–404. ISBN978-0-89281-857-0. Retrieved 24 November 2024. While a single injection of MDMA into the brain (intracerebroventricularly) had no effect on TPH activity, slow infusion of 1 mg/kg MDMA into the brain over 1 hr produced enough oxidative stress to acutely reduce TPH activity (Schmidt and Taylor 1988). The acute decrease in TPH activity is an early effect of MDMA and can be measured at post 15 min (Stone et al. 1989b). TPH inactivation can also be produced by non-neurotoxic MDMA doses (Schmidt and Taylor 1988; Stone et al. 1989a; Stone et al. 1989b). It therefore appears that MDMA rapidly induces oxidative stress but only produces neurotoxicity when endogenous free radical scavenging systems are overwhelmed.