Майкл Стюарт Браун — Вікіпедія

Майкл Стюарт Браун
англ. Michael Stuart Brown
Майкл Стюарт Браун
Майкл Стюарт Браун
Майкл Стюарт Браун
Народився13 квітня 1941(1941-04-13) (83 роки)
Бруклін, Нью-Йорк, США
КраїнаСША США
Діяльністьгенетик, лікар, викладач університету
Alma materУніверситет Пенсільванії
Галузьбіохімія
ЗакладПівденно-Західний медичний центр (Університет Техасу
ЧленствоЛондонське королівське товариство
Національна академія наук США
Американська академія мистецтв і наук
Відомий завдяки:дослідження рецептора ліпопротеїнів низької щільності
Нагороди Нобелівська премія з фізіології або медицини (1985)
Національна наукова медаль США
Особ. сторінкаprofiles.utsouthwestern.edu/profile/10894/michael-brown.html


Майкл Стюарт Бра́ун (англ. Michael Stuart Brown; 13 квітня, 1941, Бруклін, Нью-Йорк, США) — відомий американський лікар і біохімік. За дослідження спадкової гіперхолестеринемії та відкриття рецептора ліпопротеїнів низької щільності разом з Джозефом Голдштейном отримав Нобелівську премію з фізіології або медицини в 1985 році.

Біографія

[ред. | ред. код]

Майкл Браун закінчив Університет Пенсільванії в 1962 і медичну школу цього ж університету в 1966. З тих пір працює в Південно-Західному медичному центрі (Університет Техасу) в області метаболізму холестерину. Автор багатьох статей у провідних світових біологічних і медичних журналах. У 1985 році отримав Нобелівську премію за відкриття рецептора ліпопротеїнів низької щільності.

Бібліографія

[ред. | ред. код]

Основні наукові публікації: [1] Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1974 Jul 5; 185 (4145) :61-3.

[2] Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov; 6 (3) :307-16.

[3] Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan; 7 (1) :85-95.

[4] Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16; 191 (4223) :150-4.

[5] Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct; 9 (2) :195-203.

[6] Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell. 1976 Dec; 9 (4 PT 2) :663-74.

[7] Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar; 10 (3) :351-64.

[8] Genetics of the LDL receptor: evidence that the mutations affecting binding and internalization are allelic. Cell. 1977 Nov; 12 (3) :629-41.

[9] A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22-29; 270 (5639) :695-9.

[10] Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov; 15 (3) :919-33.

[11] Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21; 279 (5715) :679-85

[12] LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell. 1980 Jul; 20 (3) :829-37.

[13] Regulation of plasma cholesterol by lipoprotein receptors. Science. Тисячу дев'ятсот вісімдесят один May 8; 212 (4495) :628-35.

[14] Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. Тисячу дев'ятсот вісімдесят один May; 24 (2) :493-502.

[15] Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. 1982 Oct; 30 (3) :715-24

[16] Independent pathways for secretion of cholesterol and apolipoprotein E by macrophages. Science. 1983 Feb 18; 219 (4586) :871-3.

[17] Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar; 32 (3) :663-7

[18] The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell. 1983 Mar; 32 (3) :941-51.

[19] Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts . Cell. 1983 May, 33 (1) :273-85

[20] Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell. 1984 Apr; 36 (4) :835-45.

[21] Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12-18; 308 (5960) :613-7.

[22] Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor . Cell. 1984 Jun; 37 (2) :577-85.

[23] HMG CoA reductase: a negatively regulated gene with unusual promoter and 5 'untranslated regions. Cell. 1984 Aug; 38 (1) :275-85.

[24] The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov; 39 (1) :27-38

[25] Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11; 227 (4683) :140-6.

[26] The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17; 228 (4701) :815-22.

[27] Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17; 228 (4701) :893-895

[28] Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May; 41 (1) :249-58.

[29] Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985 Jul; 41 (3) :735-43.

[30] 5 'end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug; 42 (1) :203-12.

[31] Scavenger cell receptor shared. Nature. 1985 Aug 22-28; 316 (6030) :680-1.

[32] A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4; 232 (4746) :34-47.

[33] The JD mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors Cell. 1986 Apr 11; 45 (1) :15-24.

[34] Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6; 232 (4755) :1230-7.

[35] Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13; 48 (5) :827-35.

[36] 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27; 48 (6) :1061-9.

[37] Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987 Apr 23-29; 326 (6115) :760-765

[38] Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science. 1988 Mar 11; 239 (4845) :1277-81.

194674&query_hl=42&itool=pubmed_DocSum Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13; 62 (1) :81-8.

[39] Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30; 250 (4985) :1273-5

[40] Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. Тисяча дев'ятсот дев'яносто-один May 3; 65 (3) :429-34.

[41] cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26; 66 (2) :327-34.

[42] Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18; 70 (6) :1049-57.

[43] Koch's postulates for cholesterol. Cell. 1992 Oct 16; 71 (2) :187-8.

[44] cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell. 1993 Jun 18; 73 (6) :1091-9

[45] SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8; 75 (1) :187-97.

[46] Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11; 76 (5) :865-73.

[47] SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8; 77 (1) :53-62

[48] Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28; 85 (7) :1037-46

[49] Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein . Cell. 1996 Nov 1; 87 (3) :415-26.

[50] The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1 997 May 2; 89 (3) :331-40.

[51] Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. 1999 Dec 23; 99 (7) :703-12.

[52] Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18; 100 (4) :391-8.

[53] Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4; 102 (3) :315-23.

[54] Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1 , a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23; 110 (4) :489-500.