Зрізаний додекаедр — Вікіпедія
Зрі́заний додека́едр — напівправильний багатогранник, належить до архімедових тіл, що складається із 12 правильних десятикутників і 20 правильних трикутників, 60 вершин і 90 ребер. Двоїстий до зрізаного додекаедра многогранник — триакісікосаедр.
Отримати даний багатогранник можна внаслідок зрізання всіх вершин правильного додекаедра на третину від первісної довжини ребра, внаслідок чого п'ятикутні площини стають десятикутними, а їхні вершини перетворюються на трикутники.
Використовується в ізохорно гіперболічному заповненні простору теселяцією, об'ємами зрізаного додекаедра з дисфеноїдно вершинною фігуристикою.
Ортогональні проєкціїЗнаючи довжину ребра зрізаного додекаедра — a - отримуємо:
Математичний опис | ||
---|---|---|
Об'єм | ||
Площа поверхні |
Наступні декартові координати визначають вершини зрізаного додекаедра з довжиною ребра 2(τ-1), і з центром в початку координат —
: (0, ±1/τ, ±(2+τ)): (±(2+τ), 0, ±1/τ): (±1/τ, ±(2+τ), 0): (±1/τ, ±τ, ±2τ): (±2τ, ±1/τ, ±τ): (±τ, ±2τ, ±1/τ): (±τ, ±2, ±τ2): (±τ2, ±τ, ±2): (±2, ±τ2, ±τ)
де τ = (1 + √5) / 2 є золотим січенням (також пишеться φ).
Зрізаний додекаедр можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра багатогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.
центровано десятикутником | центровано трикутником | ||
Сферична плитка | Стереографічна проєкція (лицева) |
---|
Симетрія: [5,3], (*532) | [5,3]+, (532) | ||||||
---|---|---|---|---|---|---|---|
{5,3} | t{5,3} | r{5,3} | t{3,5} | {3,5} | rr{5,3} | tr{5,3} | sr{5,3} |
Двоїсті до однорідних багатогранників | |||||||
V5.5.5 | V3.10.10 | V3.5.3.5 | V5.6.6 | V3.3.3.3.3 | V3.4.5.4 | V4.6.10 | V3.3.3.3.5 |
- Weisstein, Eric W. Cuboctahedron(англ.) на сайті Wolfram MathWorld.
- Пчелінцев В. О. Кристалографія, кристалохімія та мінералогія. Навчальний посібник для студентів вищих навчальних закладів. Суми: Вид-во СумДУ, 2008, — 232с.
- Гордєєва Є. П., Величко В. Л. Нарисна геометрія. Багатогранники (правильні, напівправильні та зірчасті). Частина І. Навчальний посібник. Луцьк: Редакційно-видавничий відділ ЛДТУ, 2007, — 198с [Архівовано 29 березня 2017 у Wayback Machine.].
- П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. Многоугольники и многогранники. Энциклопедия элементарной математики. Москва: Государственное издательство физико-математической литературы, 1963, — 568с.