Grupa lokalnie skończona – Wikipedia, wolna encyklopedia

Grupa lokalnie skończonagrupa, której każda skończenie generowana podgrupa jest skończona. W grupie lokalnie skończonej każdy element ma skończony rząd, tj. każda grupa lokalnie skończona jest periodyczna. Każda grupa skończona jest lokalnie skończona. Przykładem nieskończonej grupy lokalnie skończonej jest grupa Prüfera.

Bibliografia

[edytuj | edytuj kod]
  • O. Kegel, B.A.P. Wehrfritz, Locally Finite Groups. North Holland, Amsterdam (1973).