行列解析

行列解析(ぎょうれつかいせき、: Matrix analysis)は線型代数学の分科であり、行列の数学的構造と解析的性質に焦点を当てて、ベクトルノルムや行列ノルムなどを導入して、連立方程式固有値問題・行列値関数行列の分解などに関する理解を深めることを目的としている。これにより、数値線形代数などのより深い議論につながる[1][2][3][4][5][6][7]

主題

[編集]

行列解析では主に以下のテーマが扱われる[1][2][3][4][5][6][7]

意義

[編集]

関数解析(特に作用素論)では、無限次元のヒルベルト空間バナッハ空間上の作用素が研究対象なので、有限次元の場合は自明だと思うかもしれないがそうではない。なぜならば作用素論における困難さは無限次元性だけではなく非可換性から来ることもあるからである(実際、作用素論の話題は行列に制限しても難易度が変わらないということが少なからずある[12][13][14])。そして行列は非可換性を持つ作用素の代表例である。行列解析は非可換性による困難さを克服しようとしている[1][2][3][4][5][6][7]

代表的な成果

[編集]

関連する論文誌

[編集]

出典

[編集]
  1. ^ a b c 山本哲朗. (2010). 行列解析の基礎–Advanced 線形代数, SGC ライブラリ 79. サイエンス社.
  2. ^ a b c 山本哲朗. (2013). 行列解析ノート: 珠玉の定理と精選問題. サイエンス社.
  3. ^ a b c Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. en:Cambridge university press.
  4. ^ a b c Bellman, R. (1997). Introduction to matrix analysis. SIAM.
  5. ^ a b c Meyer, C. D. (2000). Matrix analysis and applied linear algebra. SIAM.
  6. ^ a b c d e f Bhatia, R. (2013). Matrix analysis. en:Springer Science & Business Media.
  7. ^ a b c Applied Linear Algebra and Matrix Analysis, Thomas S. Shores, Undergraduate Texts in Mathematics (2018). Springer International Publishing.
  8. ^ Kittaneh, F. (1992). A note on the arithmetic-geometric-mean inequality for matrices. en:Linear Algebra and its Applications, 171, 1-8.
  9. ^ Bhatia, R., & Kittaneh, F. (2000). Notes on matrix arithmetic–geometric mean inequalities. en:Linear Algebra and Its Applications, 308(1-3), 203-211.
  10. ^ Bhatia, R., & Davis, C. (1993). More matrix forms of the arithmetic-geometric mean inequality. en:SIAM Journal on Matrix Analysis and Applications, 14(1), 132-136.
  11. ^ Cardoso, J. R., & Ralha, R. (2016). Matrix arithmetic-geometric mean and the computation of the logarithm. en:SIAM Journal on Matrix Analysis and Applications, 37(2), 719-743.
  12. ^ Simon, B. (2015). Operator theory. American Mathematical Society.
  13. ^ Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, I., & Sauvageot, J. L. (2016). Noncommutative analysis, operator theory and applications. Springer International Publishing.
  14. ^ Yoshino, Takashi (1993). Introduction to Operator Theory. Chapman and Hall/CRC. ISBN 978-0582237438.
  15. ^ Ando, T. (1995). Matrix young inequalities. In Operator theory in function spaces and Banach lattices (pp. 33-38). Birkhäuser Basel.
  16. ^ Lewis, A. S. (2000). Lidskii's theorem via nonsmooth analysis. en:SIAM Journal on Matrix Analysis and Applications, 21(2), 379-381.
  17. ^ F. Hansen, G.K. Pedersen, Jensen’s inequality for operators and Loewner’s theorem, Math. Ann. 258 (1982) 229–241.
  18. ^ F. Hansen, G.K. Pedersen, Jensen’s operator inequality, Bull. London Math. Soc. 35 (2003) 553–564.

参考文献

[編集]
  • R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Res. Notes in Math. Ser. 162, Longman, 1987.
  • 朝倉数学大系 7, 境界値問題と行列解析 (2014). 山本哲朗, 朝倉書店.

外部リンク

[編集]